

POLYNOMIALS

PPT-4

SUBJECT : MATHEMATICS

CHAPTER NUMBER: 02

CHAPTER NAME : POLYNOMIALS

CHANGING YOUR TOMORROW

Learning outcome

- 1. Students will be able to know Division algorithm for polynomials
- 2. Students will be able to establish relationship among dividend, divisor, quotient and the remainder.

PREVIOUS KNOWLEDGE TEST

Relationship between the zeros and the coefficients of a polynomial:

(i) If α, β are zeros of $p(x) = ax^2 + bx + c$, then

$$\text{Sum of zeros} = \alpha + \beta = \frac{-b}{a} = \frac{-\text{(Coefficient of } x\text{)}}{\text{Coefficient of } x^2}$$

$$\text{Product of zeros} = \alpha \beta = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(ii) If α, β, γ are zeros of $p(x) = ax^3 + bx^2 + cx + d$, then

$$\alpha + \beta + \gamma = \frac{-b}{a} = \frac{-\text{(Coefficient of } x^2\text{)}}{\text{Coefficient of } x^3}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$$

$$\alpha\beta\gamma = \frac{-d}{a} = \frac{-\text{(Constant term)}}{\text{Coefficient of } x^3}$$

(iii) If α, β are roots of a quadratic polynomial $p(x)$, then

$$p(x) = x^2 - (\text{sum of zeros})x + \text{product of zeros}$$

$$\Rightarrow p(x) = x^2 - (\alpha + \beta)x + \alpha\beta$$

(iv) If α, β, γ are the roots of a cubic polynomial $p(x)$, then

$$p(x) = x^3 - (\text{sum of zeros})x^2 + (\text{sum of product of zeros taken two at a time})x - \text{product of zeros}$$

$$\Rightarrow p(x) = x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$$

- Division Algorithm for polynomials
- If $p(x)$ and $g(x)$ are any two polynomials with $g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that $p(x) = g(x) \times q(x) + r(x)$, where $r(x) = 0$ or degree of $r(x) <$ degree of $g(x)$
- <https://youtu.be/vs2GYsMn9vw>

- Some more Division Algorithm for polynomials
- <https://youtu.be/a9-ME46dX18> (10.43)

- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in the following : $p(x) = x^3 - 3x^2 + 5x - 3$, $g(x) = x^2 - 2$

(i) Here $p(x) = x^3 - 3x^2 + 5x - 3$; $g(x) = x^2 - 2$
dividing $p(x)$ by $g(x)$

$$\begin{array}{r}
 x - 3 \\
 x^2 - 2 \overline{) x^3 - 3x^2 + 5x - 3} \\
 -x^3 \quad + 2x \\
 \hline
 -3x^2 + 7x - 3 \\
 -3x^2 \quad + 6 \\
 \hline
 7x - 9
 \end{array}$$

Quotient = $x - 3$, Remainder = $7x - 9$

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial.

- $t^2 - 3, 2t^4 + 3t^3 - 2t^2 - 9t - 12$

(ii) We have,

$$t^2 - 3 \overline{)2t^4 + 3t^3 - 2t^2 - 9t - 12}$$

$$\underline{-2t^4 \mp 6t^2}$$

$$\underline{-3t^3 \mp 9t}$$

$$4t^2 - 12$$

$$\underline{-4t^2 \mp 12}$$

$$\underline{0}$$

Clearly, remainder is zero, so $t^2 - 3$ is a factor of polynomial $2t^4 + 3t^3 - 2t^2 - 9t - 12$.

:HOME ASSIGNMENT Ex. 2.2 Q. No 1 to 21.

AHA

1. If the polynomial $x^4 + 2x^3 + 8x^2 + 12x + 18$ is divided by another polynomial $x^2 + 5$, the remainder comes out to be $px + q$. Find the values of p and q .
2. If the polynomial $6x^4 + 8x^3 - 5x^2 + ax + b$ is exactly divisible by the polynomial $2x^2 - 5$, then find the values of a and b .
3. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be $x + a$, find the values of k and a .

THANKING YOU
ODM EDUCATIONAL GROUP