

CIRCLES

INTRODUCTION

SUBJECT : MATHEMATICS
CHAPTER NUMBER: 10
CHAPTER NAME : CIRCLES

CHANGING YOUR TOMORROW

LEARNING OUTCOME

1. Students will be able to know about tangents.
2. Students will be able to identify whether a given line is a tangent or secant to a circle.
3. Students will be able to prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
4. Students will be able to apply the knowledge of above theorem in solving questions. .

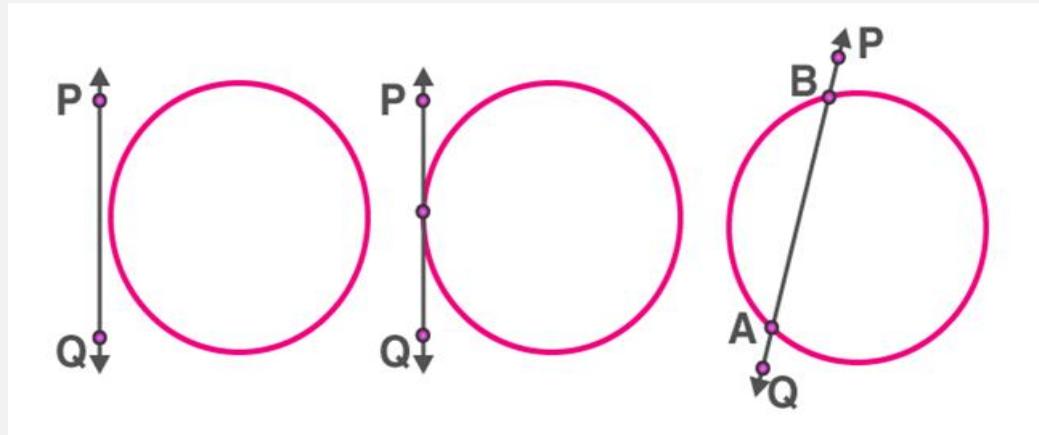
Circle and line in a plane

For a circle and a line on a plane, there can be **three** possibilities.

i) they can be **non-intersecting**

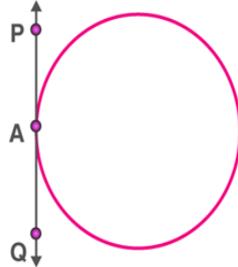
ii) they can have a **single common point**: in this case, the line touches the circle.

iii) they can have **two common points**: in this case, the line cuts the circle.

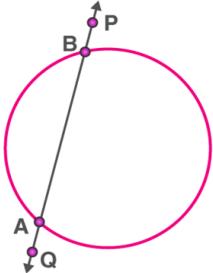


Tangent

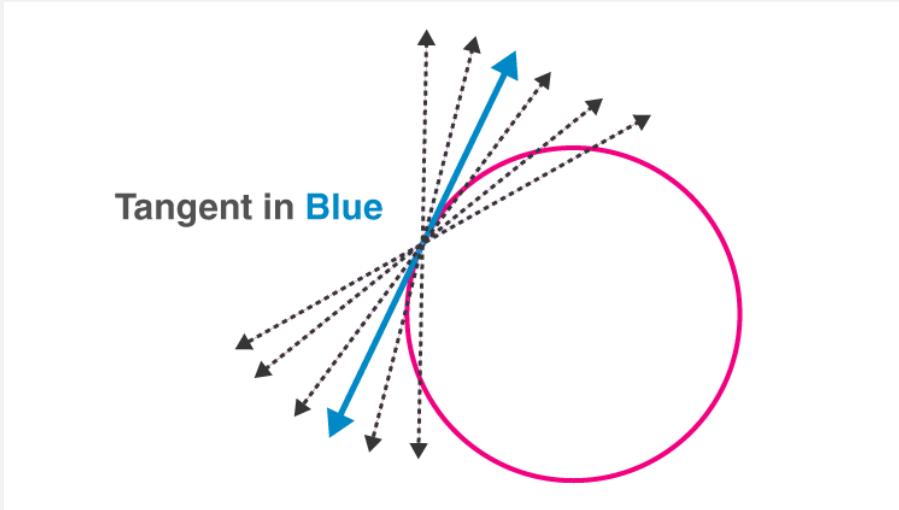
A **tangent to a circle** is a line which touches the circle at exactly one point. For every point on the circle, there is a unique tangent passing through it.



A secant to a circle is a line which has two points in common with the circle. It cuts the circle at two points, forming a chord of the circle.



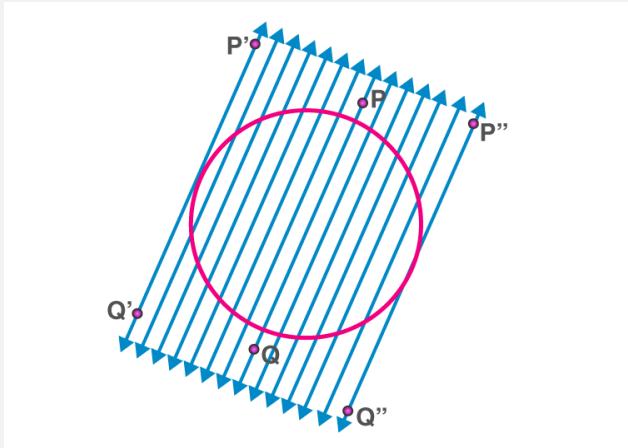
Tangent as a special case of Secant



The tangent to a circle can be seen as a special case of the secant when the two endpoints of its corresponding chord coincide.

Two parallel tangents at most for a given secant

For every given **secant** of a circle, there are **exactly two tangents** which are **parallel** to it and touches the circle at two **diametrically opposite points**.



Introduction, Tangents to a circle

[https://youtu.be/gI6p3UynrlQ\(9.25\)](https://youtu.be/gI6p3UynrlQ)

Theorem 10.1 : The tangent at any point of a circle is perpendicular to the radius through the point of contact

Given. A circle with centre O and radius OP . AB is line through P such that $OP \perp AB$.

To Prove. AB is a tangent to the circle at the point P .

Construction. Take a point Q on AB other than P and join OQ .

Proof. The perpendicular distance of a point from a line is the shortest distance between them, and

$$OP \perp AB$$

$\Rightarrow OP$ is the shortest distance among all the line segment joining O to any point on AB .

$\Rightarrow OP < OQ$

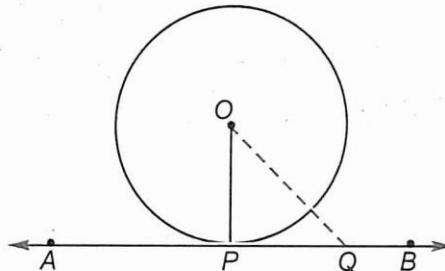
$\Rightarrow OQ > \text{radius } OP$

$\Rightarrow Q$ lies outside the circle

\Rightarrow Every point on AB , other than P , lies outside the circle.

Thus, the line AB meets the circle at the point P only.

Hence, AB is a tangent to the circle at the point P .



1. How many tangents can a circle have?

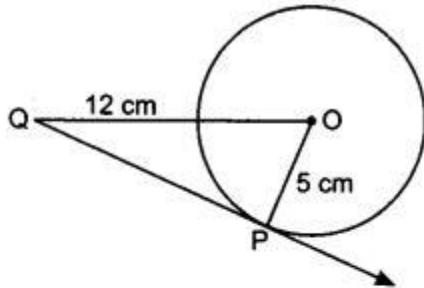
2. Fill in the blanks :

- (i) A tangent to a circle intersects it in..... point (s).
- (ii) A line intersecting a circle in two points is called.....
- (iii) A circle can have parallel tangents at the most for a given secant.
- (iv) The common point of a tangent to a circle and the circle is called.....

. There can be infinitely many tangents to a circle.

- (i)** One
- (ii)** Secant
- (iii)** Two
- (iv)** Point of contact.

3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $OQ = 12$ cm. Length PQ is : (A) 12 cm (B) 13 cm (C) 8.5 cm (D) $\sqrt{119}$ cm.



Radius of the circle = 5 cm

$OQ = 12$ cm

$\angle OPQ = 90^\circ$

[The tangent to a circle is perpendicular to the radius through the point of contact]

$PQ^2 = OQ^2 - OP^2$ [By Pythagoras theorem]

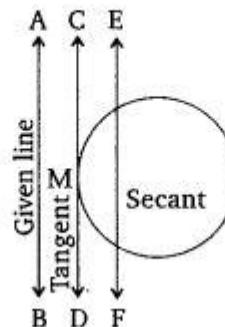
$$PQ^2 = 12^2 - 5^2 = 144 - 25 = 199$$

$$PQ = \sqrt{199} \text{ cm.}$$

Hence correct option is (d).

4 . Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Here, AB is the given line. CD is tangent to the given circle at the point M and parallel to AB, and EF is a secant parallel to AB.



HOME ASSIGNMENT Ex. 10.1 Q. 1 to Q 4

AHA

1. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.
7. Two concentric circles are of radii.

THANKING YOU
ODM EDUCATIONAL GROUP