

Framing Algebraic Expressions

SUBJECT : MATHEMATICS

CHAPTER NUMBER: 21

CHAPTER NAME:FRAMING ALGEBRAIC EXPRESSIONS.

SUB TOPIC:Problem Solving on Evaluation of Algebraic Expressions.

PERIOD NO:2

CHANGING YOUR TOMORROW

Learning outcomes

- Students will be able to evaluate algebraic expressions.
- Students will be able apply evaluation of algebraic expressions.

Previous Knowledge Test

1. If $a = -10$, evaluate:

- (i) $5a$
- (ii) a^2
- (iii) a^3

2. If $x = -6$, evaluate:

- (i) $11x$
- (ii) $4x^2$
- (iii) $2x^3$

FRAMING ALGEBRAIC EXPRESSIONS

Definition

Algebraic Expression An expression consisting of numbers, constants, variables, and operation symbols.

Examples of variable expressions:

$$3x$$

$$4x^2 + 1$$

$$-3x^3y + y^2z$$

$$2\pi r$$

Example #4

Evaluate $5 - x^2$ for $x = -2$

$$5 - (-2)^2 = 5 - 4 = 1$$

$$5 - -\textcircled{2}^2 \quad 5 -$$

Evaluation Question

11. If $m = -7$, evaluate:

- (i) $12m$
- (ii) $2m^2$
- (iii) $2m^3$

Solution: (i) $12m$

The value of $12m$ for $m = -7$ is calculated as below,

$$\begin{aligned}12m &= 12 \times (-7) \\&= -84\end{aligned}$$

Therefore, the value of $12m$ for $m = -7$ is -84

(ii) $2m^2$

The value of $2m^2$ for $m = -7$ is calculated as below,

$$\begin{aligned}2m^2 &= 2 \times (-7)^2 \\&= 2 \times 49 = 98\end{aligned}$$

Therefore, the value of $2m^2$ for $m = -7$ is 98

(iii) The value of $2m^3$ for $m = -7$ is calculated as below,

$$2m^3 = 2 \times (-7)^3 = 2 \times (-343) = -686$$

Therefore, the value of $2m^3$ for $m = -7$ is -686

Evaluation Question

12. Find the average (A) of four quantities p, q, r and s. If A = 6, p = 3, q = 5 and r = 7; find the value of s.

Solution : The average of four quantities p, q, r and s is calculated as,

$$A = (p + q + r + s) / 4$$

Substituting the given values in the above expression, we get

$$6 = (3 + 5 + 7 + s) / 4$$

$$6 \times 4 = 3 + 5 + 7 + s$$

$$24 = 15 + s$$

$$s = 24 - 15$$

$$s = 9$$

Hence, the value of s is 9

13. If a = 5 and b = 6, evaluate:

- (i) $3ab$
- (ii) $6a^2b$
- (iii) $2b^2$

Evaluation Question

Solution:

(i) $3ab$ The value of $3ab$ for $a = 5$ and $b = 6$ is calculated as follows,

$$3ab = 3 \times a \times b = 3 \times 5 \times 6 = 90$$

Therefore, the value of $3ab$ if $a = 5$ and $b = 6$ is 90

(ii) $6a^2b$, The value of $6a^2b$ for $a = 5$ and $b = 6$ is calculated as follows,

$$6a^2b = 6 \times a \times a \times b$$

$$= 6 \times 5 \times 5 \times 6$$

$$= 6 \times 25 \times 6 = 900$$

Therefore, the value of $6a^2b$ if $a = 5$ and $b = 6$ is 900

(iii) $2b^2$, The value of $2b^2$ for $a = 5$ and $b = 6$ is calculated as follows,

$$2b^2 = 2 \times b \times b = 2 \times 6 \times 6 = 2 \times 36 = 72$$

Therefore, the value of $2b^2$ if $a = 5$ and $b = 6$ is 72

14. If $x = 8$ and $y = 2$, evaluate:

- (i) $9xy$
- (ii) $5x^2y$
- (iii) $(4y)^2$

Evaluation Question

Solution:(i) $9xy$

The value of $9xy$ for $x = 8$ and $y = 2$ is calculated as follows,

$$9xy = 9 \times x \times y$$

$$9xy = 9 \times 8 \times 2$$

$$9xy = 144$$

Hence, the value of $9xy$ for $x = 8$ and $y = 2$ is 144

(ii) $5x^2y$,

The value of $5x^2y$ for $x = 8$ and $y = 2$ is calculated as follows,

$$5x^2y = 5 \times x \times x \times y$$

$$= 5 \times 8 \times 8 \times 2 = 640$$

Hence, the value of $5x^2y$ for $x = 8$ and $y = 2$ is 640

(iii) $(4y)^2$.The value of $(4y)^2$ for $x = 8$ and $y = 2$ is calculated as follows,

$$(4y)^2 = (4 \times 2)^2 = (8)^2 = 64$$

Hence, the value of $(4y)^2$ for $x = 8$ and $y = 2$ is 64

Evaluation Question

15. If $x = 5$ and $y = 4$, evaluate:

- (i) $8xy$
- (ii) $3x^2y$
- (iii) $3y^2$

Solution: (i) $8xy$, The value of $8xy$ for $x = 5$ and $y = 4$ is calculated as follows,

$$\begin{aligned}8xy &= 8 \times x \times y \\&= 8 \times 5 \times 4 = 160\end{aligned}$$

Therefore, the value of $8xy$ for $x = 5$ and $y = 4$ is 160

(ii) $3x^2y$, The value of $3x^2y$ for $x = 5$ and $y = 4$ is calculated as follows,

$$\begin{aligned}3x^2y &= 3 \times x \times x \times y = 3 \times 5 \times 5 \times 4 \\&= 15 \times 20 = 300\end{aligned}$$

Therefore, the value of $3x^2y$ for $x = 5$ and $y = 4$ is 300

(iii) The value of $3y^2$ for $x = 5$ and $y = 4$ is calculated as follows,

$$3y^2 = 3 \times y \times y = 3 \times 4 \times 4 = 48$$

Therefore, the value of $3y^2$ for $x = 5$ and $y = 4$ is 48

Evaluation Question

16. If $y = 5$ and $z = 2$, evaluate:

- (i) $100yz$ (ii) $9y^2z$
- (iii) $5y^2$ (iv) $(5z)^3$

Solution: (i) $100yz$,

The value of $100yz$ for $y = 5$ and $z = 2$ is calculated as below,

$$\begin{aligned}100yz &= 100 \times y \times z = 100 \times 5 \times 2 \\&= 100 \times 10 = 1000\end{aligned}$$

Hence, the value of $100yz$ for $y = 5$ and $z = 2$ is 1000

(ii) $9y^2z$, The value of $9y^2z$ for $y = 5$ and $z = 2$ is calculated as below,

$$\begin{aligned}9y^2z &= 9 \times y \times y \times z \\&= 9 \times 5 \times 5 \times 2 = 45 \times 10 = 450\end{aligned}$$

Hence, the value of $9y^2z$ for $y = 5$ and $z = 2$ is 450

Evaluation Question

18. If $m = 3$ and $n = 7$, evaluate:

- (i) $12mn$
- (ii) $5mn^2$
- (iii) $(10m)^2$
- (iv) $4n^2$

Solution:(i) $12mn$

The value of $12mn$ for $m = 3$ and $n = 7$ is calculated as follows,

$$12mn = 12 \times m \times n = 12 \times 3 \times 7 = 252$$

Hence, the value of $12mn$ for $m = 3$ and $n = 7$ is 252

(ii) $5mn^2$ The value of $5mn^2$ for $m = 3$ and $n = 7$ is calculated as follows,

$$5mn^2 = 5 \times m \times n^2$$

$$= 5 \times 3 \times 7^2 = 5 \times 3 \times 7 \times 7 = 735$$

Hence, the value of $5mn^2$ for $m = 3$ and $n = 7$ is 735.

Evaluation Question

(iii) $(10m)^2$, The value of $(10m)^2$ for $m = 3$ and $n = 7$ is calculated as follows,

$$(10m)^2 = (10 \times m)^2$$

$$= (10 \times 3)^2 = (30)^2 = 900$$

Hence, the value of $(10m)^2$ for $m = 3$ and $n = 7$ is 900

(iv) $4n^2$, The value of $4n^2$ for $m = 3$ and $n = 7$ is calculated as follows,

$$4n^2 = 4 \times n^2 = 4 \times 7^2 = 4 \times 7 \times 7$$

$$= 196$$

Hence, the value of $4n^2$ for $m = 3$ and $n = 7$ is 196

Additional Homework

1. Add:

- (i) $a + b$ and $2a + 3b$
- (ii) $2x + y$ and $3x - 4y$
- (iii) $-3a + 2b$ and $3a + b$
- (iv) $4 + x$, $5 - 2x$ and $6x$

HW
Ex. 21 Q.NO. 11 TO 20

**THANKING YOU
ODM EDUCATIONAL GROUP**