

EXPONENTS

PERIOD 3

SUBJECT : MATHEMATICS
CHAPTER NUMBER: 2
CHAPTER NAME : EXPONENTS

CHANGING YOUR TOMORROW

Learning outcome

- Students will **learn** what a base is and what an **exponent** is.
- Students will **learn** that **exponents** are a shortcut for multiplication.
- Students will **learn** to evaluate terms with **exponents**.
- Students will practice evaluating terms with **exponents**
- Students will simplify express as positive indices

Previous knowledge test:

1) Simplify:

$$(x^{a+b})^{a-b} \cdot (x^{b+c})^{b-c} \cdot (x^{c+a})^{c-a}$$

2) (i) $(a^{-2})^{-2} \cdot (ab)^{-3}$

(ii) $(x^n y^{-m})^4 \times (x^3 y^{-2})^{-n}$

Problems:

1. If $3^x = 500$, find the value of 3^{x-2}

Sol: $3^{x-2} = 3^x \div 3^2 = 500/9$

2. Express the product of 3.2×10^6 and 4.1×10^1 in the standard form.

Sol: Product of 3.2×10^6 and 4.1×10^{-1}

$$\begin{aligned} &= (3.2 \times 10^6) (4.1 \times 10^{-1}) \\ &= (3.2 \times 4.1) \times 10^6 \times 10^{-1} \\ &= 13.12 \times 10^5 = 1.312 \times 10^5 \times 10^1 \quad [:: a^m \times a^n = a^{m+n}] \\ &= 1.312 \times 10^6 \end{aligned}$$

Examples:

Given, $\frac{5^m \times 5^3 \times 5^{-2}}{5^{-5}} = 5^{12}$

Using laws of exponents, $a^m \times a^n = (a)^{m+n}$ and $a^{-m} = \frac{1}{a^m}$ [$\because a$ is non-zero integer]

Then, $5^m \times 5^3 \times 5^{-2} \times 5^5 = 5^{12}$

$\Rightarrow 5^m \times 5^8 \times 5^{-2} = 5^{12}$

$\Rightarrow 5^m \times 5^6 = 5^{12}$

$\Rightarrow 5^{m+6} = 5^{12}$ [$\because a^m \times a^n = a^{m+n}$]

On comparing both sides, we get

$$m + 6 = 12$$

$\Rightarrow m = 6$

4) Planet A is at a distance of 9.35×10^6 km from Earth and planet B is 6.27×10^7 km from Earth. Which planet is nearer to Earth?

Sol: Distance between planet A and Earth = 9.35×10^6 km Distance between planet B and Earth = 6.27×10^7 km

For finding difference between above two distances, we have to change both in same exponent of 10, i.e. $9.35 \times 10^6 = 0.935 \times 10^7$, clearly 6.27×10^7 is greater. So, planet A is nearer to Earth.

$$\frac{16 \times 10^2 \times 64}{2^4 \times 4^2}$$

5) Evaluate:

Using laws of exponents, $a^m + a^n = (a)^{m-n}$ and $a^m \times a^n = a^{m+n}$ $[\because a \text{ is non-zero integer}]$

$$\begin{aligned} \frac{16 \times 10^2 \times 64}{2^4 \times 4^2} &= (4)^2 \times \frac{16 \times 10^2 \times 64}{2^4 \times 4^2} \quad \left[\because 64 = 4 \times 4 \times 4 \right] \\ &\quad \left[\text{and } 16 = 4 \times 4 \right] \end{aligned}$$

$$= (4)^3 \times 10^2 \times 2^{-4}$$

$$= (2^2)^3 \times 10^2 \times 2^{-4}$$

$$= 2^6 \times 10^2 \times 2^{-4}$$

$$= 2^2 \times 10^2 = 4 \times 100 = 400$$

$$[\because 2^2 = 4]$$

Home assignment:

Exercise-2(B)

AHA

$$(i) \left(\frac{x^a}{x^b} \right)^{\frac{1}{ab}} \left(\frac{x^b}{x^c} \right)^{\frac{1}{bc}} \left(\frac{x^c}{x^a} \right)^{\frac{1}{ca}} = 1$$

$$(ii) \frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} = 1$$

**THANKING YOU
ODM EDUCATIONAL GROUP**

