

PERIOD 9

MATHEMATICS

CHAPTER NUMBER :~ 7
CHAPTER NAME :~ TRIANGLES

CHANGING YOUR TOMORROW

PREVIOUS KNOWLEDGE TEST

1. In a triangle ABC, D is the mid-point of side AC such that $BD = \frac{1}{2} AC$. Show that $\angle ABC$ is a right angle.

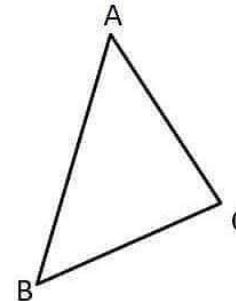
LEARNING OUTCOME:-

1. Students will be able to learn about the inequalities in a triangle.
2. Students will be able to solve application sums on inequalities of triangles.

If two sides of a triangle are unequal, the angle opposite to larger side is larger (or greater).

Given :- $\triangle ABC$ such that $AB > AC$.

To Prove :- $\angle C > \angle B$.



Construction:- Take a point P on AB such that $AP = AC$ and join CP.

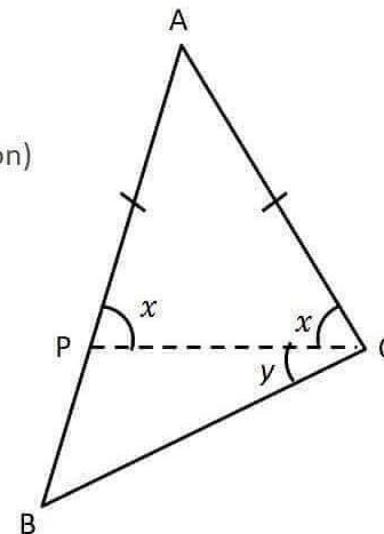
Let $\angle APC = x^\circ$ & $\angle BCP = y^\circ$

Proof:- Since $AP = AC$ (By construction)

By **Theorem 7.2**: In triangle,
angles opposite to equal sides are equal

$\Rightarrow \angle ACP = \angle APC$

$\Rightarrow \angle ACP = x$... (1)

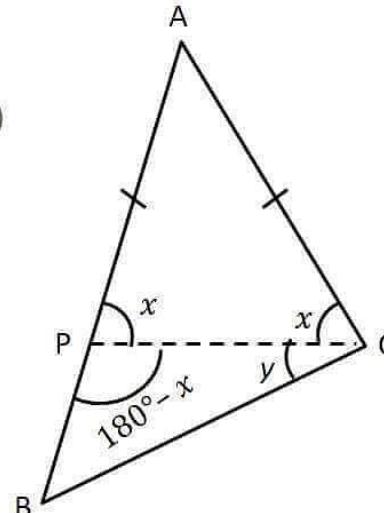


On line AB,

$$\angle APC + \angle BPC = 180^\circ \quad (\text{Linear pair})$$

$$\angle BPC = 180^\circ - \angle APC$$

$$\angle BPC = 180^\circ - x \quad \dots(2)$$



In $\triangle PBC$,

$$\angle BPC + \angle PBC + \angle PCB = 180^\circ \quad (\text{Sum of angles of a triangle is } 180^\circ)$$

$$180^\circ - x + \angle PBC + y = 180^\circ$$

$$\angle PBC = 180^\circ - 180^\circ + x - y$$

$$\angle PBC = x - y$$

$$\angle B = x - y$$

Now,

$$\angle C = \angle BPC + \angle PCA = x + y$$

Thus,

$$\angle C > \angle B$$

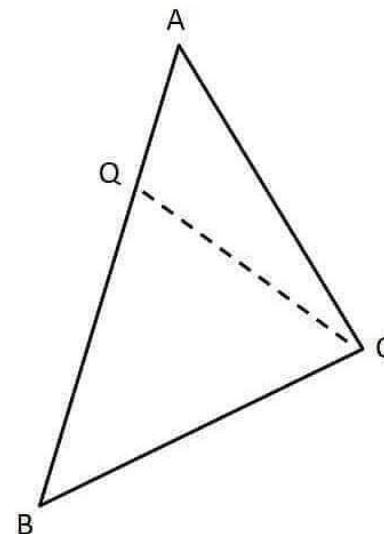
Similarly,

If $AB > BC$,

Take point Q on AB such that $BQ = BC$,

then we can prove $\angle C > \angle A$

Hence Proved.

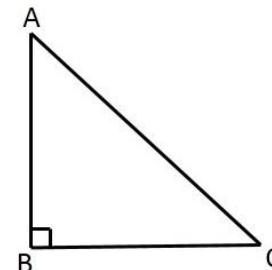


Ex7.4, 1

Show that in a right angled triangle, the hypotenuse is the longest side.

Given:

ΔABC is a right-angled triangle
, right-angled at B i.e. $\angle B = 90^\circ$



To prove: AC is the longest side of ΔABC

Proof:

In ΔABC ,

$$\angle A + \angle B + \angle C = 180^\circ \quad (\text{Angle sum property of triangle})$$

$$\angle A + 90^\circ + \angle C = 180^\circ \quad (\text{Given } \angle B = 90^\circ)$$

$$\angle A + \angle C = 180^\circ - 90^\circ$$

$$\angle A + \angle C = 90^\circ$$

Angle can't be 0 or negative

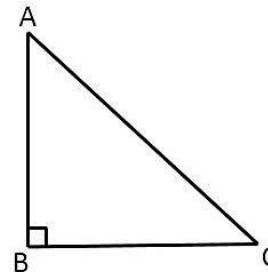
Hence,

$$\angle A < 90^\circ$$

$$\angle A < \angle B$$

$$BC < AC$$

(Side opposite to the greater angle is longer)



Also,

$$\angle C < 90^\circ$$

$$\angle C < \angle B$$

$$AB < AC$$

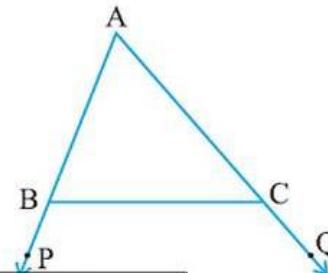
(Side opposite to the greater angle is longer)

\therefore AC is the longest side in $\triangle ABC$

Hence proved

Ex7.4, 2 (Method 1)

In the given figure sides AB and AC of $\triangle ABC$ are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that $AC > AB$.



$\angle PBC$ is the external angle of $\triangle ABC$

So, $\angle PBC = \angle A + \angle ACB$

*(Exterior angle is sum
of interior opposite angles)* ... (1)

Similarly,

$\angle QCB$ is the external angle of $\triangle ABC$

So, $\angle QCB = \angle A + \angle ABC$

*(Exterior angle is sum
of interior opposite angles)* ... (2)

Now,

$$\angle PBC < \angle QCB$$

$$\angle A + \angle ACB < \angle A + \angle ABC \quad (\text{From (1)&(2)})$$

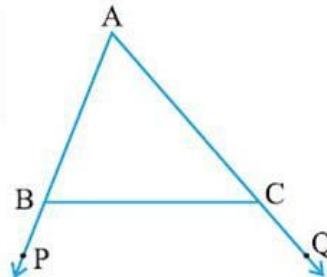
$\angle ACB < \angle ABC$

$AB < AC$

(Side opposite to the
greater angle is longer)

Thus, $AC > AB$

Hence proved.



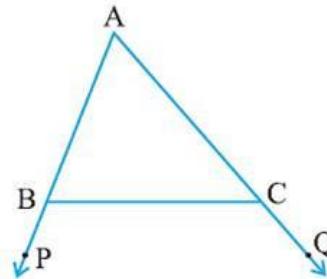
Ex7.4, 2 (Method 2)

In the given figure sides AB and AC of $\triangle ABC$ are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that $AC > AB$.

Since AP is a line

$$\angle ABC + \angle PBC = 180^\circ \quad (\text{Linear Pair})$$

$$\angle ABC = 180^\circ - \angle PBC \quad \dots(1)$$



Similarly,

Since AQ is a line

$$\angle ACB + \angle QCB = 180^\circ \quad (\text{Linear Pair})$$

$$\angle ACB = 180^\circ - \angle QCB \quad \dots(2)$$

Now,

$$\angle PBC < \angle QCB$$

$$-\angle PBC > -\angle QCB$$

(Sign changes on multiplying negative number)

$$180^\circ - \angle PBC > 180^\circ - \angle QCB$$

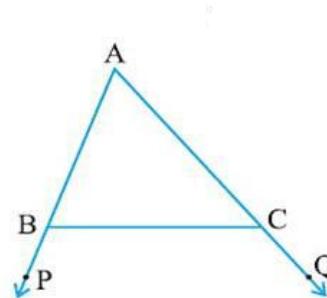
$\angle ABC > \angle ACB$

$AC > AB$

(Side opposite to the greater angle is longer)

Thus, $AC > AB$

Hence proved.



HOMEWORK ASSIGNMENT

Exercise 7.4
Question number 1,2

AHA

. ABCD is quadrilateral such that $AB = AD$ and $CB = CD$. Prove that AC is the perpendicular bisector of BD.

**THANKING YOU
ODM EDUCATIONAL GROUP**