

PERIOD 2

MATHEMATICS

CHAPTER NUMBER :~ 7

CHAPTER NAME :~ TRIANGLES

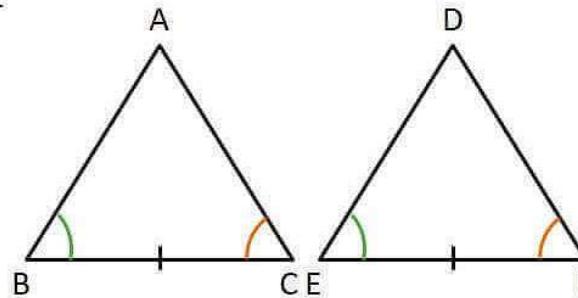
CHANGING YOUR TOMORROW

PREVIOUS KNOWLEDGE TEST

- 1.What is the difference between similar figures and congruent figures.
- 2.What do you mean by corresponding parts of congruent figures.

LEARNING OUTCOME:-

1. Students will be able to learn ASA congruence rule.
2. Students will be able to prove ASA congruence rule.


Two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of other triangle.

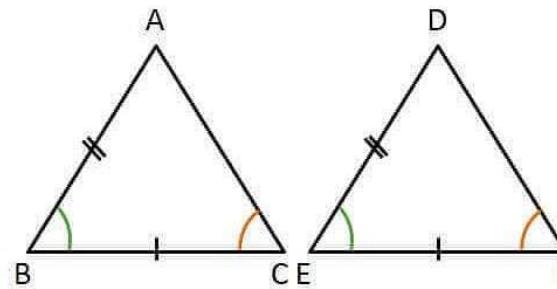
Given :- $\triangle ABC$ and $\triangle DEF$ such that

$$\angle B = \angle E \text{ & } \angle C = \angle F$$

and $BC = EF$

To Prove :- $\triangle ABC \cong \triangle DEF$

Proof:- We will prove by considering the following cases :-


Case 1: Let $AB = DE$

In $\triangle ABC$ and $\triangle DEF$

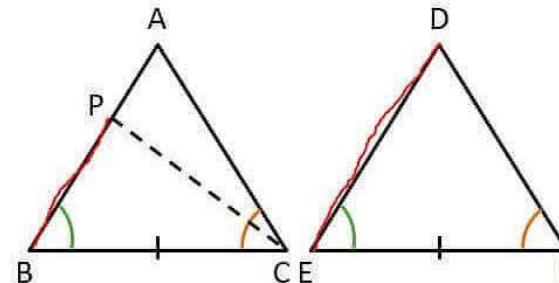
$$AB = DE \quad (\text{Assumed})$$

$$\angle B = \angle E \quad (\text{Given})$$

$$BC = EF \quad (\text{Given})$$

$$\Rightarrow \triangle ABC \cong \triangle DEF \quad (\text{SAS congruence rule})$$

Case 2: $AB > DE$

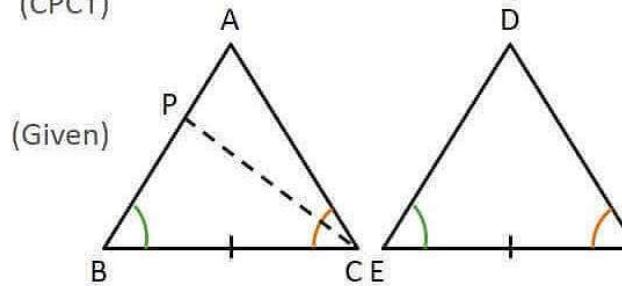

Construction :- Take a point P on AB such that $PB = DE$

In $\triangle PBC$ and $\triangle DEF$

$$PB = DE \quad (\text{Assumed})$$

$$\angle B = \angle E \quad (\text{Given})$$

$$BC = EF \quad (\text{Given})$$

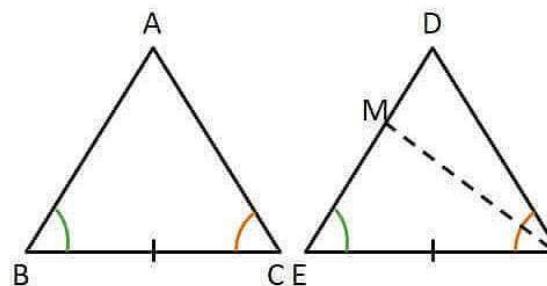

$$\Rightarrow \triangle PBC \cong \triangle DEF \quad (\text{SAS congruence rule})$$

$\Rightarrow \angle PCB = \angle DFE$

(CPCT)

But $\angle ACB = \angle DFE$

Thus, $\angle ACB = \angle PCB$


This is possible only if P is coincides with A

$\Rightarrow AB = DE$

\therefore By Case 1

$\Delta ABC \cong \Delta DEF$

Case 3: If $AB < DE$

If $AB < DE$, then by choosing a point M on DE such that

$AB = ME$ and repeating the argument in Case (2).

We get $\Delta ABC \cong \Delta DEF$

AAS CONGRUENCE RULE

Two triangles are congruent if any two

pairs of angles and one pair of

corresponding sides are equal.

EVALUATION QUESTIONS

In quadrilateral ACBD, $AC = AD$ and AB bisects $\angle A$ (See the given fig.)
Show that $\Delta ABC \cong \Delta ABD$. What can you say about BC and BD?

In quadrilateral ACBD, $AC = AD$ and AB bisects $\angle A$ (See the given fig.)
Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?

Given: $AC = AD$... (1)

AB bisects $\angle A$

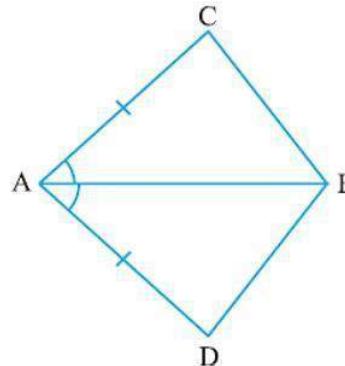
i.e. $\angle CAB = \angle DAB$... (2)

To prove: $\triangle ABC \cong \triangle ABD$

Proof:

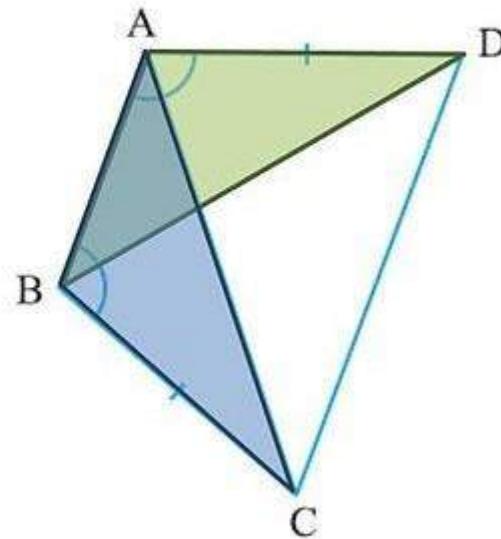
In $\triangle ABC$ and $\triangle ABD$,

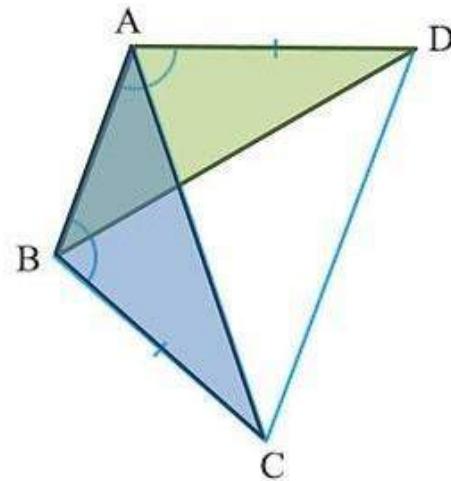
$AB = AB$ (Common)


$\angle CAB = \angle DAB$ (From (2))

$AC = AD$ (From (1))

$\therefore \triangle ABC \cong \triangle ABD$ (SAS congruence rule)


$\therefore BC = BD$ (CPCT)


Therefore, BC and BD are of equal length.

ABCD is a quadrilateral in which $AD = BC$ and $\angle DAB = \angle CBA$
(See the given figure). Prove that

- (i) $\Delta ABD \cong \Delta BAC$
- (ii) $BD = AC$
- (iii) $\angle ABD = \angle BAC$.

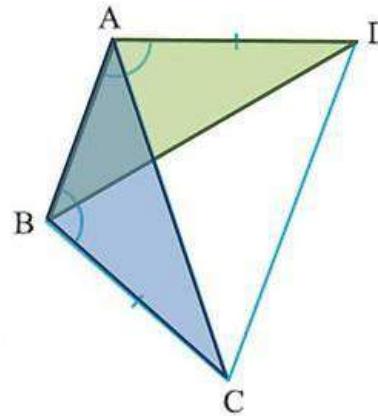
Given:

$$AD = BC \quad \dots(1)$$

$$\text{and } \angle DAB = \angle CBA \quad \dots(2)$$

To prove: (i) $\Delta ABD \cong \Delta BAC$, (ii) $BD = AC$, (iii) $\angle ABD = \angle BAC$

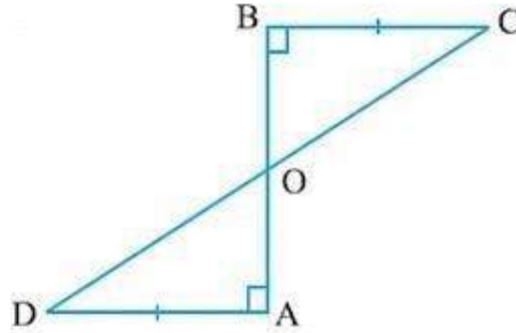
Proof:


In $\triangle ABD$ and $\triangle BAC$,

$$AD = BC \quad (\text{Given})$$

$$\angle DAB = \angle CBA \quad (\text{Given})$$

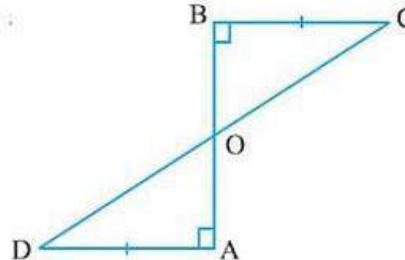
$$AB = BA \quad (\text{Common})$$


$$\triangle ABD \cong \triangle BAC \quad (\text{SAS congruence rule})$$

$$\therefore BD = AC \quad (\text{CPCT})$$

$$\text{And, } \angle ABD = \angle BAC \quad (\text{CPCT})$$

AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.

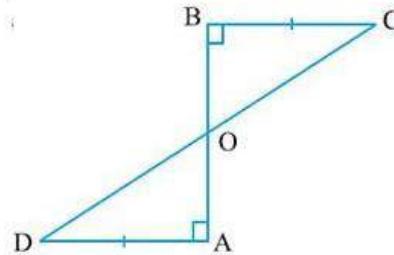

AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.

Given:

$$AD = BC \quad \dots(1)$$

$$AD \perp AB, \text{ i.e. } \angle OAD = 90^\circ$$

$$BC \perp AB, \text{ i.e. } \angle OBC = 90^\circ$$


To prove: CD bisects AB i.e. $OA = OB$

Proof:

Since

Line CD & AB intersect.

$$\angle AOD = \angle BOC \quad (\text{Vertically opposite angles}) \quad \dots(2)$$

In $\triangle BOC$ and $\triangle AOD$,

$$\angle BOC = \angle AOD \quad (\text{From (2)})$$

$$\angle CBO = \angle DAO \quad (\text{Both angles } 90^\circ)$$

$$BC = AD \quad (\text{From (1)})$$

$$\therefore \triangle BOC \cong \triangle AOD \quad (\text{AAS congruence rule})$$

$$\therefore BO = AO \quad (\text{CPCT})$$

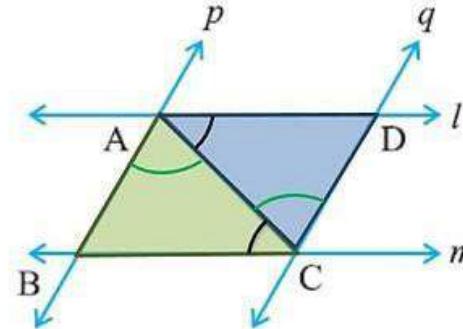
Hence proved

l and m are two parallel lines intersected by another pair of parallel lines p and q (see the given figure). Show that $\Delta ABC \cong \Delta CDA$.

Given:

$$l \parallel m$$

$$\& p \parallel q$$



l and m are two parallel lines intersected by another pair of parallel lines p and q (see the given figure). Show that $\triangle ABC \cong \triangle CDA$.

Given:

$$l \parallel m$$

$$\& p \parallel q$$

To prove: $\triangle ABC \cong \triangle CDA$

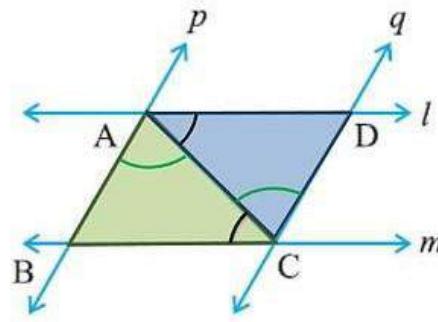
Proof:

Taking $l \parallel m$ and AC is the transversal,

$$\angle ACB = \angle CAD \quad (\text{Alternate angles}) \quad \dots(1)$$

Considering $p \parallel q$ and AC is the transversal,

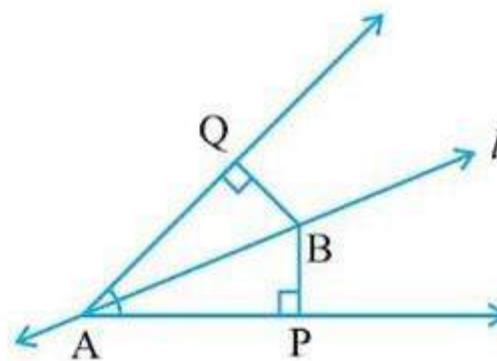
$$\angle BAC = \angle DCA \quad (\text{Alternate angles}) \quad \dots(2)$$


In $\triangle ABC$ and $\triangle CDA$,

$$\angle ACB = \angle CAD \quad (\text{From (1)})$$

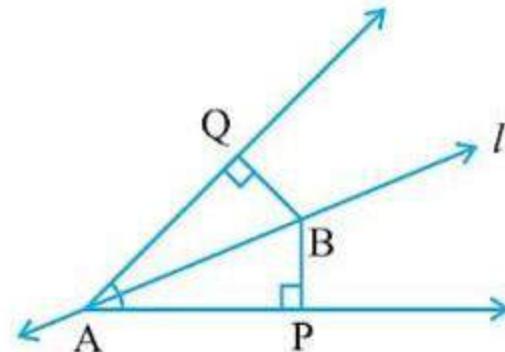
$$AC = CA \quad (\text{Common})$$

$$\angle BCA = \angle DAC \quad (\text{From (2)})$$


$$\therefore \triangle ABC \cong \triangle CDA \quad (\text{ASA congruence rule})$$

Hence proved

Line l is the bisector of an angle $\angle A$ and B is any point on l . BP and BQ are perpendiculars from B to the arms of $\angle A$ (see the given figure). Show that:


- (i) $\Delta APB \cong \Delta AQB$
- (ii) $BP = BQ$ or B is equidistant from the arms of $\angle A$.

Given:

l is the bisector of $\angle A$

So, $\angle PAB = \angle QAB$... (1)

BP & BQ are perpendiculars from B,

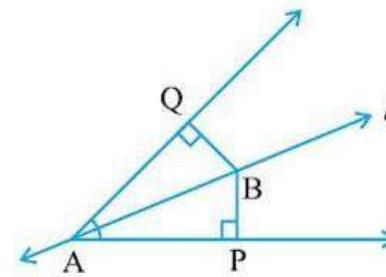
So, $\angle APB = \angle AQB = 90^\circ$... (2)

To prove: (i) $\triangle APB \cong \triangle AQB$ (ii) $BP = BQ$

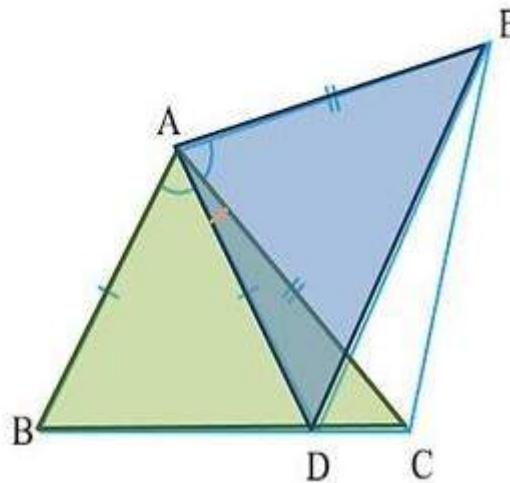
Proof:

In $\triangle APB$ and $\triangle AQB$,

$$\angle APB = \angle AQB \quad (\text{From (2)})$$


$$\angle PAB = \angle QAB \quad (\text{From (1)})$$

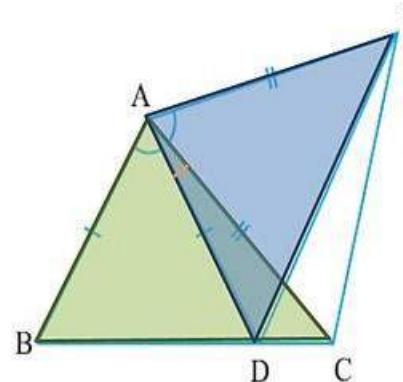
$$AB = AB \quad (\text{Common})$$


$$\therefore \triangle APB \cong \triangle AQB \quad (\text{AAS congruence rule})$$

$$\therefore BP = BQ \quad (\text{CPCT})$$

Hence proved

In the given figure, $AC = AE$, $AB = AD$ and $\angle BAD = \angle EAC$. Show that $BC = DE$.


In the given figure, $AC = AE$, $AB = AD$ and $\angle BAD = \angle EAC$. Show that $BC = DE$.

Given:

$$AC = AE \quad \dots(1)$$

$$AB = AD \quad \dots(2)$$

$$\angle BAD = \angle EAC$$

To prove: $BC = DE$

Proof:

Given that

$$\angle BAD = \angle EAC$$

$$\angle BAD + \angle DAC = \angle EAC + \angle DAC$$

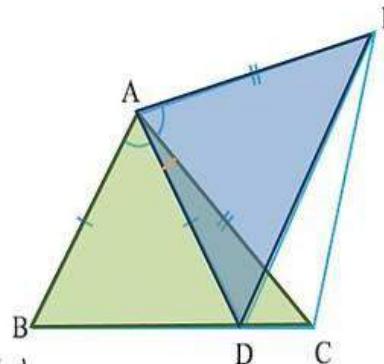
$$\angle BAC = \angle DAE \quad \dots(3)$$

In $\triangle ABC$ and $\triangle ADE$,

$$AB = AD$$

(From (2))

$$\angle BAC = \angle DAE$$

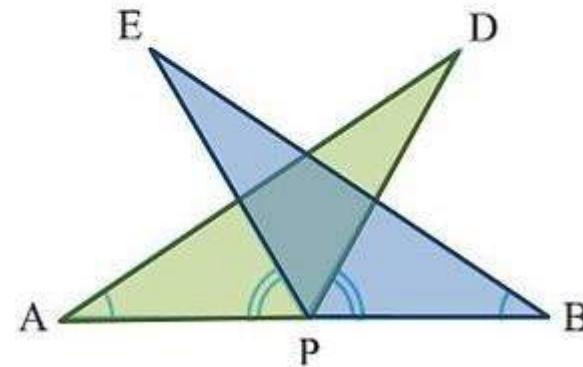

(From (3))

$$AC = AE$$

(From (1))

$$\therefore \triangle ABC \cong \triangle ADE$$

(SAS congruence rule)


$$\therefore BC = DE$$

(CPCT)

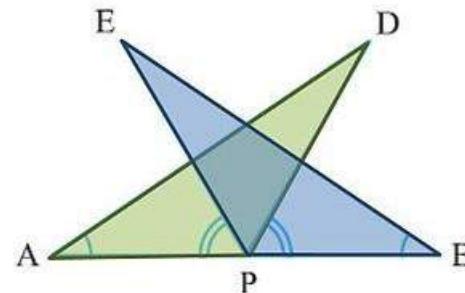
Hence proved

AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (See the given figure). Show that

- (i) $\Delta DAP \cong \Delta EBP$
- (ii) $AD = BE$

AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (See the given figure). Show that

(i) $\Delta DAP \cong \Delta EBP$ (ii) $AD = BE$


Given:

P is the mid point of AB,

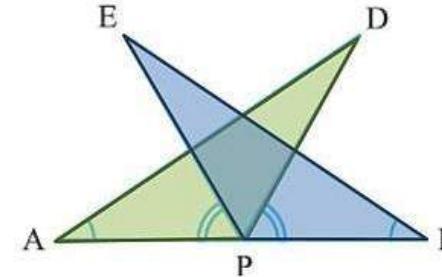
So, $AP = BP$... (1)

$\angle BAD = \angle ABE$... (2)

$\angle EPA = \angle DPB$... (3)

To prove: (i) $\Delta DAP \cong \Delta EBP$ (ii) $AD = BE$

Proof:


Since

$$\angle EPA = \angle DPB$$

We add $\angle DPE$ both sides

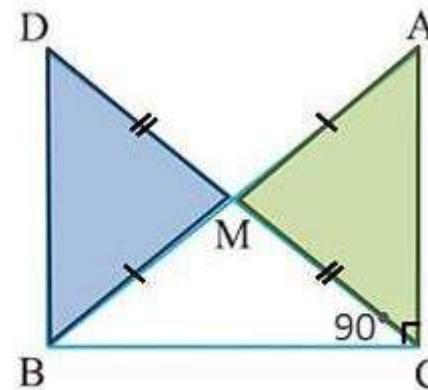
$$\angle EPA + \angle DPE = \angle DPB + \angle DPE$$

$$\angle DPA = \angle EPB \quad \dots(4)$$

In $\triangle DAP$ and $\triangle EBP$,

$$\angle DAP = \angle EBP \quad (\text{From (2)})$$

$$AP = BP \quad (\text{From (1)})$$


$$\angle DPA = \angle EPB \quad (\text{From (4)})$$

$$\therefore \triangle DAP \cong \triangle EBP \quad (\text{ASA congruence rule})$$

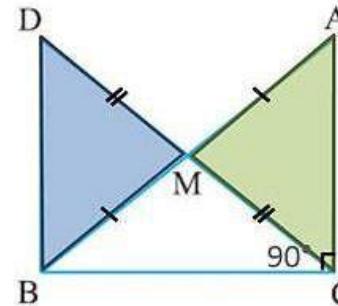
$$\therefore AD = BE \quad (\text{CPCT})$$

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that $DM = CM$. Point D is joined to point B (see the given figure). Show that:

(i) $\triangle AMC \cong \triangle BMD$

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that $DM = CM$. Point D is joined to point B (see the given figure). Show that:

(i) $\triangle AMC \cong \triangle BMD$


Given:

$$\angle ACB = 90^\circ$$

M is the mid-point of AB

So, $AM = BM$... (1)

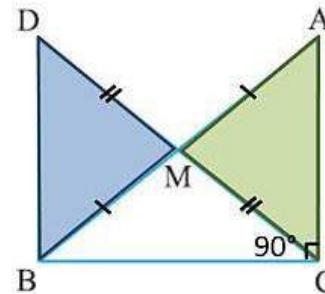
Also, $DM = CM$... (2)

To prove: $\triangle AMC \cong \triangle BMD$

Proof:

Lines CD & AB intersect...

So, $\angle AMC = \angle BMD$ (*Vertically opposite angles*) ... (3)

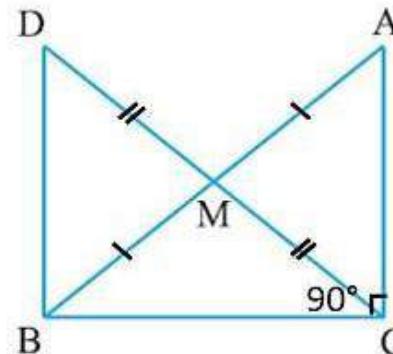
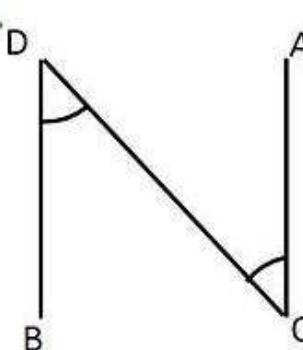

In $\triangle AMC$ and $\triangle BMD$,

$$AM = BM \quad (\text{From (1)})$$

$$\angle AMC = \angle BMD \quad (\text{From (3)})$$

$$CM = DM \quad (\text{From (2)})$$

$\therefore \triangle AMC \cong \triangle BMD$ *(SAS congruence rule)*

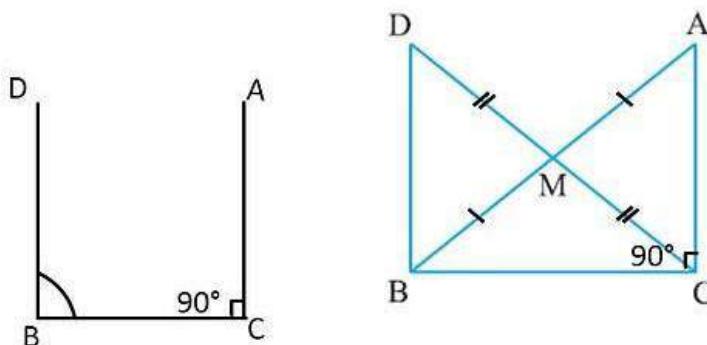



Show that:

(ii) $\angle DBC$ is a right angle.

From part 1,

$$\Delta AMC \cong \Delta BMD$$


$$\therefore \angle ACM = \angle BDM \quad (\text{CPCT})$$

But $\angle ACM$ and $\angle BDM$ are alternate interior angles

for lines AC & BD

If a transversal intersects two lines such that pair of alternate interior angles is equal, then lines are parallel.

So, $BD \parallel AC$

Now, Since

$DB \parallel AC$ and Considering BC as transversal

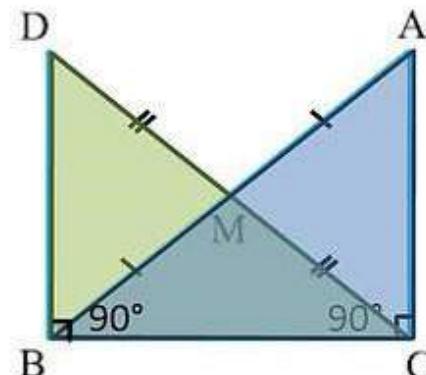
, $\Rightarrow \angle DBC + \angle ACB = 180^\circ$ *(Interior angles on the same side of transversal are supplementary)*

$$\Rightarrow \angle DBC + 90^\circ = 180^\circ$$

$$\Rightarrow \angle DBC = 180^\circ - 90^\circ$$

$$\Rightarrow \angle DBC = 90^\circ$$

Hence, $\angle DBC$ is a right angle


Hence proved

(iii) $\Delta DBC \cong \Delta ACB$

From part 1,

$$\Delta \text{AMC} \cong \Delta \text{BMD}$$

$$AC = BD \quad (CPCT) \quad \dots(1)$$

In $\triangle DBC$ and $\triangle ACB$,

$$DB = AC \quad (From \ (1))$$

$$\angle DBC = \angle ACB \quad (Both \ 90^\circ)$$

BC = CB *(Common)*

$\therefore \Delta DBC \cong \Delta ACB$ (SAS congruence rule)

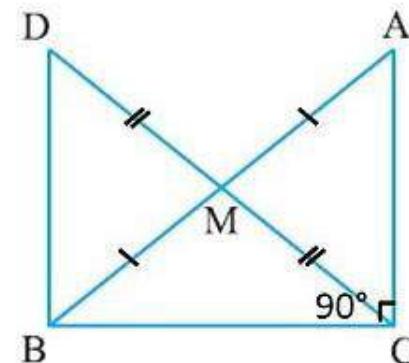
Show that:

$$(iv) CM = \frac{1}{2} AB$$

From part 3,

$$\Delta DBC \cong \Delta ACB$$

$$\therefore DC = AB \quad (\text{CPCT})$$

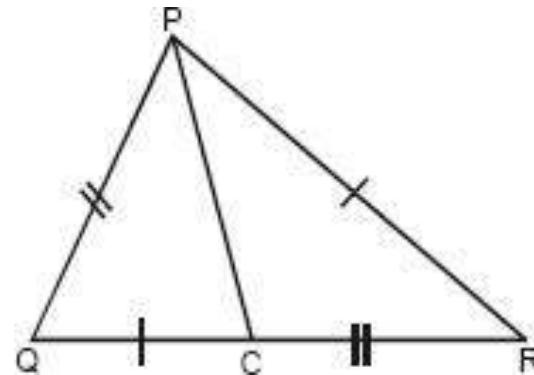

$$\frac{1}{2} DC = \frac{1}{2} AB$$

$$\text{As } DM = CM$$

$$\therefore DM = CM = \frac{1}{2} DC$$

$$CM = \frac{1}{2} AB$$

Hence proved



HOMEWORK ASSIGNMENT

Exercise 7.1 Qno 5,6,7,8

AHA

1. In the given figure, triangles PQC and PRC are such that $QC = PR$ and $PQ = CR$. Prove that $\angle PCQ = \angle CPR$

**THANKING YOU
ODM EDUCATIONAL GROUP**