

QUADRATIC EQUATIONS

PPT4

SUBJECT: MATHEMATICS

CHAPTER NUMBER: 04

CHAPTER NAME : QUADRATIC EQUATIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

Quadratic Equation

When we equate a quadratic polynomial to a constant, we get a quadratic equation.

Any equation of the form $p(x) = ax^2 + bx + c$, where $p(x)$ is a polynomial of degree 2 and c is a constant, is a quadratic equation.

The standard form of a Quadratic Equation

The standard form of a quadratic equation is $ax^2 + bx + c = 0$, where a, b and c are real numbers and $a \neq 0$.

‘ a ’ is the coefficient of x^2 . It is called the quadratic coefficient. ‘ b ’ is the coefficient of x . It is called the linear coefficient. ‘ c ’ is the constant term.

LEARNING OUTCOME

1. Students will be able to find solution of a Quadratic Equations .
2. Students will be able to find solution of quadratic equation by completing the square method.

Solutions of a quadratic equation by completing the square
method

[https://youtu.be/cIZi_taMEVY\(14.20\)](https://youtu.be/cIZi_taMEVY(14.20))

Solution of a Quadratic Equation by Completing the Square

In this method, we convert the quadratic equation into a form so that the term containing x is completely inside a square. Then by taking the square roots, we can easily find its roots.

Steps Involved in the Method of Completing the Square

Step 1 Write the quadratic equation in the form $ax^2 + bx + c = 0$, $a \neq 0$.

Step 2 Divide the equation throughout by a , if it is not unity.

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

Step 3 Bring the constant term on R.H.S.

$$x^2 + \frac{b}{a}x = -\frac{c}{a}$$

Step 4 Add square of half the coefficient of x i.e., $\left(\frac{b}{2a}\right)^2$ on both sides.

$$x^2 + 2\left(\frac{b}{2a}\right) + \left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$$

Step 5 Write R.H.S. as a perfect square

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

Step 6 Take square root of both sides and obtain the values of x .

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$\text{Hence, } x = \frac{b}{2a} \pm \sqrt{\frac{b^2 - 4ac}{2a}}$$

REMARK Instead of dividing the quadratic equation throughout by a , we can also multiply the equation throughout by a and then complete its square.

Find the roots of the equation $2x^2 + x - 4 = 0$ by the method of completing the square.

$$\begin{aligned}
 & \therefore 2x^2 + x - 4 = 0 \\
 \Rightarrow & 2x^2 + x = 4 \\
 \Rightarrow & x^2 + \frac{1}{2}x = \frac{4}{2} \quad [\text{Dividing both sides by 2}]
 \end{aligned}$$

Adding $\left[\frac{1}{2} \text{ coefficient of } x\right]^2$ i.e., $\left(\frac{1}{2} \times \frac{1}{2}\right)^2$, on both sides, we get

$$\begin{aligned}
 x^2 + \frac{1}{2}x + \frac{1}{16} &= \frac{1}{16} + 2 \quad \Rightarrow \quad \left(x + \frac{1}{4}\right)^2 = \left(\frac{\sqrt{33}}{4}\right)^2 \\
 x + \frac{1}{4} &= \pm \frac{\sqrt{33}}{4} \\
 \Rightarrow x &= \frac{-1 \pm \sqrt{33}}{4}
 \end{aligned}$$

Hence, the roots of the equation are $\frac{-1 + \sqrt{33}}{4}$ and $\frac{-1 - \sqrt{33}}{4}$.

Solve the equation $2x^2 - 7x + 3 = 0$ by the method of completing the square

Solve the equation $2x^2 - 7x + 3 = 0$ by the method of completing the square.

Given : $2x^2 - 7x + 3 = 0$

$$\Rightarrow 2x^2 - 7x = -3 \quad [\text{Transferring the constant term}]$$
$$\Rightarrow x^2 - \frac{7}{2}x = -\frac{3}{2} \quad [\text{Dividing both sides by 2}]$$

Adding $\left[\frac{1}{2} \text{ coefficient of } x\right]^2$ i.e., $\left[\frac{1}{2} \times \left(-\frac{7}{2}\right)\right]^2$ on both sides, we get

$$x^2 - \frac{7}{2}x + \left(-\frac{7}{4}\right)^2 = \left(-\frac{7}{4}\right)^2 - \frac{3}{2}$$

$$\left(x - \frac{7}{4}\right)^2 = \frac{49 - 24}{16} = \frac{25}{16} = \left(\frac{5}{4}\right)^2$$

$$\Rightarrow x - \frac{7}{4} = \pm \frac{5}{4} \quad \Rightarrow x = \frac{7}{4} \pm \frac{5}{4}$$

$$\Rightarrow x = \frac{7}{4} + \frac{5}{4} \quad \text{or} \quad x = \frac{7}{4} - \frac{5}{4}$$

$$\Rightarrow x = \frac{7+5}{4} = 3 \quad \text{or} \quad x = \frac{7-5}{4} = \frac{2}{4} = \frac{1}{2}$$

Hence, the roots of the equation are 3 and $\frac{1}{2}$.

Solve the equation $2x^2 + x + 4 = 0$ by the method of completing the square(if they exist)

Given : $2x^2 + x + 4 = 0 \Rightarrow 2x^2 + x = -4$

$$x^2 + \frac{1}{2}x = -\frac{4}{2} \quad [\text{Dividing both sides by 2}]$$

Adding $\left[\frac{1}{2} \text{ coefficient of } x\right]^2$ i.e., $\left(\frac{1}{2} \times \frac{1}{2}\right)^2$ or $\frac{1}{16}$ to both sides, we get

$$x^2 + \frac{1}{2}x + \frac{1}{16} = \frac{1}{16} - 2 \Rightarrow \left(x + \frac{1}{4}\right)^2 = \frac{1-32}{16} = -\frac{31}{16} < 0$$

But $\left(x + \frac{1}{4}\right)^2$ cannot be negative for any real value of x .

\Rightarrow No real value of x can satisfy the given equation.

Hence, the given equation has no real roots.

HOME ASSIGNMENT Ex. 4.3 Q. No 1& 3

AHA

Find the roots of the following quadratic equations, if they exist, using the quadratic

formula: (i) $3x^2 - 5x + 2 = 0$

(ii) $x^2 + 4x + 5 = 0$

THANKING YOU ODM EDUCATIONAL GROUP

