

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PPT3

SUBJECT : MATHEMATICS

CHAPTER NUMBER: 03

CHAPTER NAME : PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

CHANGING YOUR TOMORROW

Website: www.odmgroup.org

Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

- **Consistent system.** A system of linear equations is said to be consistent if it has at least one solution.
- **Inconsistent system.** A system of linear equations is said to be inconsistent if it has no solution.
- The general form of a pair of linear equations is: $a_1x + b_1y + c_1 = 0$; $a_2x + b_2y + c_2 = 0$ where a_1, a_2, b_1, b_2, c_1 and c_2 are real numbers, such that $a_1^2 + b_1^2 \neq 0, a_2^2 + b_2^2 \neq 0$.
- A pair of values of variables 'x' and 'y' which satisfy both the equations in the given system of equations is said to be a solution of the simultaneous pair of linear equations.
-

Learning outcome

- Students will be able to find solution of a pair of linear equations graphically
-
- Students will be able to draw the graph of a pair of linear equations in two variables
-

Students will be able to know the conditions for consistency and apply the conditions in drawing graphs.

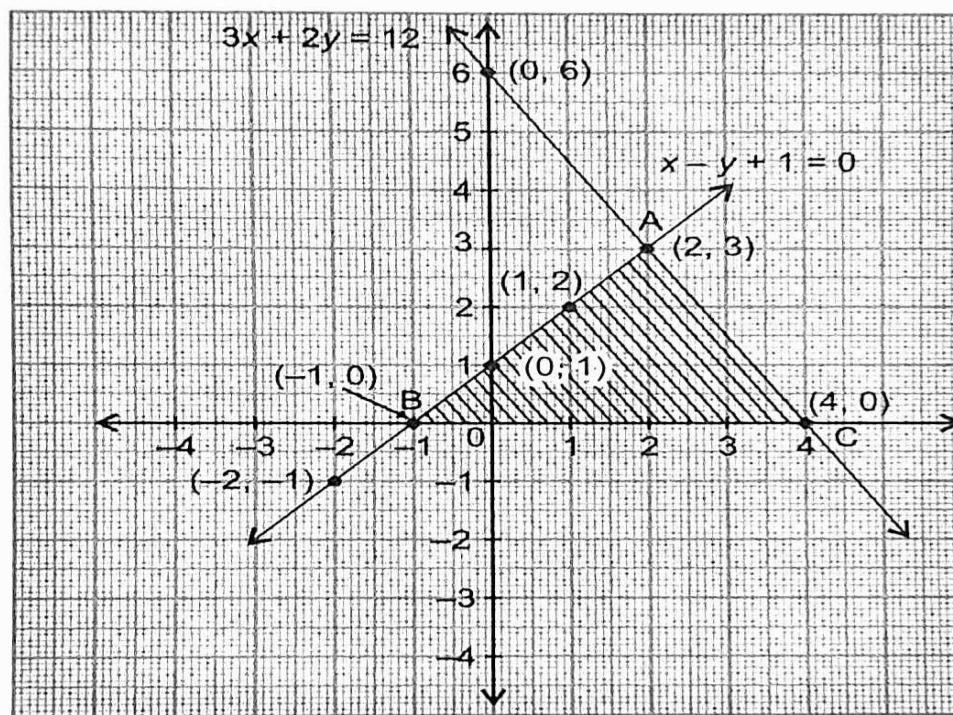
Draw the graphs of the equations $x - y + 1 = 0$ and $3x + 2y - 12 = 0$. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis, and shade the triangular region.

Sol. 1st equation is $x - y + 1 = 0$.

Table for 1st equation $x = y - 1$

Table is

x	0	1	-2	2
y	1	2	-1	3


2nd equation is $3x + 2y = 12$

$$\Rightarrow 3x = 12 - 2y \Rightarrow x = \frac{12 - 2y}{3}$$

Table is

x	4	2	0
y	0	3	6

Required triangle is ABC . Coordinates of its vertices are $A(2, 3)$, $B(-1, 0)$, $C(4, 0)$.

Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m. Find the dimensions of the garden.

<https://youtu.be/2VSufdxWMFw>

5. Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m. Find the dimensions of the garden.

Sol. Let length of garden = x m and width of garden = y m

$$\therefore \text{Perimeter of rectangular garden} = 2(x + y)$$

A.T.Q.

Ist Condition:

$$\frac{2(x + y)}{2} = 36 \Rightarrow x + y = 36 \quad \dots (i)$$

2nd Condition:

$$x = y + 4 \Rightarrow x - y = 4 \quad \dots (ii)$$

Adding equation (i) and (ii), we get

$$2x = 40 \Rightarrow x = 20$$

Putting $x = 20$ in equation (i), we get

$$20 + y = 36$$

$$y = 16$$

Hence, dimensions of the garden are 20 m and 16 m.

Given the linear equation $2x + 3y - 8 = 0$, write another linear equation in two variables such that the geometrical representation of the pair so formed is: (i) intersecting lines (ii) parallel lines (iii) coincident lines.

<https://youtu.be/DZfQEZYnPnBY>

6. Given the linear equation $2x + 3y - 8 = 0$, write another linear equation in two variables, such that the geometrical representation of the pair so formed is:

(i) intersecting lines

(ii) parallel lines

(iii) coincident lines

Sol. Given equation is $2x + 3y - 8 = 0$

We have $2x + 3y = 8$... (i)

Let required equation be $ax + by = c$... (ii)

Condition:

(i) For intersecting lines

$\frac{2}{a} \neq \frac{3}{b} \neq \frac{8}{c}$, where a, b, c can have any value which satisfy the above condition.

Let $a = 3, b = 2, c = 4$

So, $\frac{2}{3} \neq \frac{3}{2} \neq \frac{8}{4}$

\therefore Equations are $2x + 3y = 8$

and $3x + 2y = 4$

Equations $2x + 3y = 8$ and $3x + 2y = 4$ have unique solution and their geometrical representation shows intersecting lines.

(iii) For coincident lines:

Given equation is $2x + 3y = 8$

Let required equation be $ax + by = c$

For coincident lines.

$$\frac{a}{2} = \frac{b}{3} = \frac{c}{8}$$

So, a, b, c can have any possible value which satisfy the above condition.

Let $a = 2, b = 3, c = 8$

\therefore Equation will be $2x + 3y = 8$.

Equations $2x + 3y = 8$ and

$2x + 3y = 8$ have infinitely many solutions and their geometrical representation shows coincident lines.

Home assignment

-
- **Ex. 3.2 Q. 4 to 7 & AHA**
Represent the following pair of equations graphically and write the coordinates of points where the lines intersect $X + 3Y = 6$, $2X - 3Y = 12$

THANKING YOU

ODM EDUCATIONAL GROUP

