

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PPT2

SUBJECT : MATHEMATICS

CHAPTER NUMBER: 03

CHAPTER NAME : PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

An **equation** in the form $ax + by + c = 0$, where a , b and c are real **numbers**, and $a \neq 0$ and $b \neq 0$, is called a **linear equation in two variables** x and y . For Example: $2x + 3y + 7 = 0$, where $a = 2$, $b = 3$, $c = 5$ are real **numbers**. So, given **equation** is a **linear equation in two variables**.

- The general form of a pair of linear equations is: $a_1x + b_1y + c_1 = 0$; $a_2x + b_2y + c_2 = 0$ where a_1 , a_2 , b_1 , b_2 , c_1 and c_2 are real numbers, such that $a_1^2 + b_1^2 \neq 0$, $a_2^2 + b_2^2 \neq 0$.
- A pair of values of variables 'x' and 'y' which satisfy both the equations in the given system of equations is said to be a solution of the simultaneous pair of linear equations.
-

Learning outcome

- Students will be able to find solution of a pair of linear equations graphically
-
- Students will be able to draw the graph of a pair of linear equations in two variables
-

Students will be able to know the conditions for consistency

Find the solution of a pair Linear Equations in two Variables

<https://youtu.be/vt99nBFTF8o{10.08}>

Form the pair of linear equations in the following problem, and find the solution graphically.

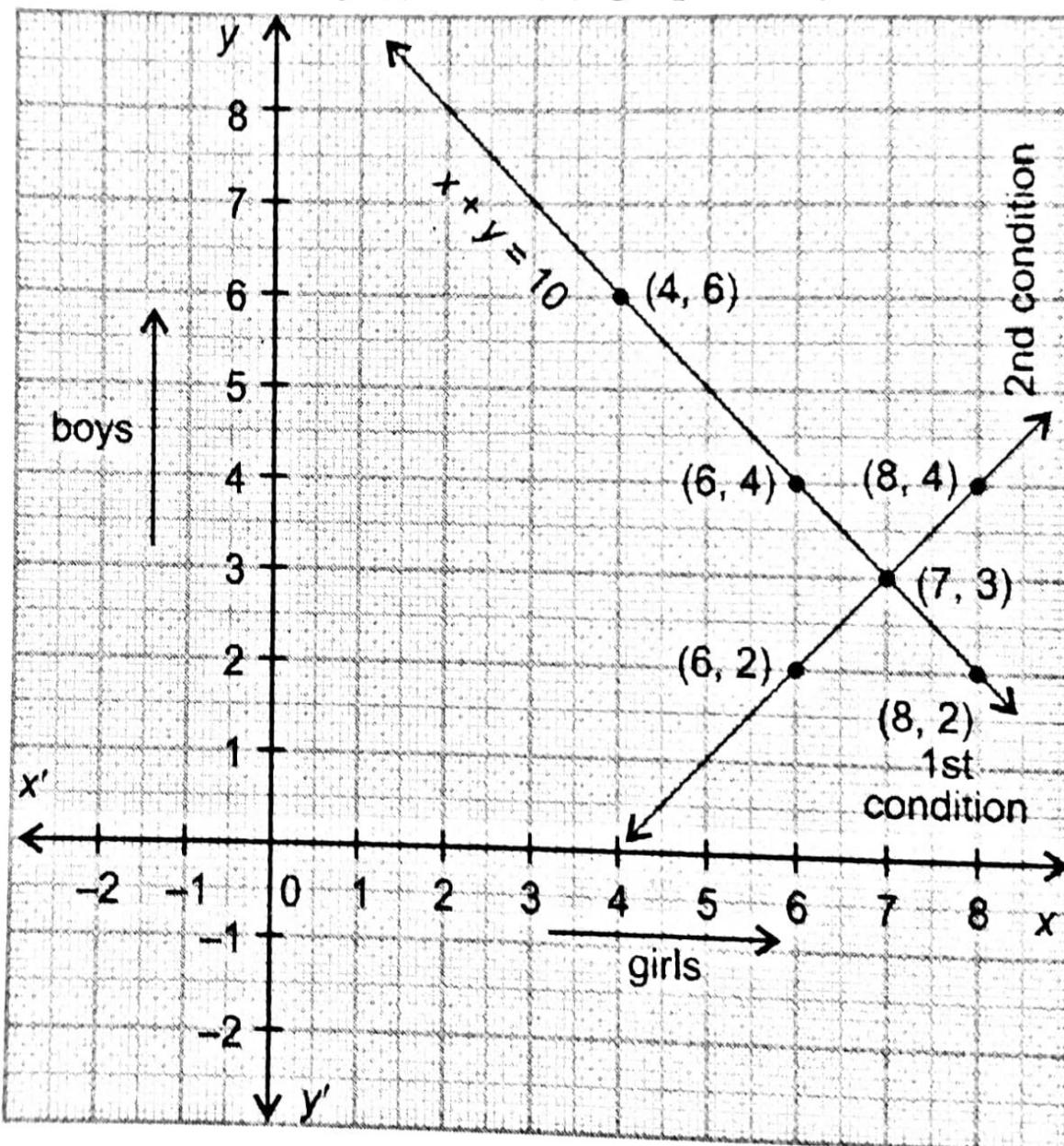
10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz

l. (i) Let the number of girls be x and number of boys be y .

A.T.Q.

Ist Condition:

$$x + y = 10 \quad \dots (i)$$


x	4	6	7	8
y	6	4	3	2

2nd Condition:

$$x = y + 4 \Rightarrow x - y = 4 \quad \dots (ii)$$

x	8	6	7
y	4	2	3

Solving (i) and (ii) graphically

Solution is $x = 7$, $y = 3$ i.e. (7, 3)

Hence, no. of girls, $x = 7$

and no. of boys, $y = 3$

Conditions for consistency or inconsistency

<https://youtu.be/PZwwjR06kWQ>.

• **Consistent system.** A system of linear equations is said to be consistent if it has at least one solution.

• **Inconsistent system.** A system of linear equations is said to be inconsistent if it has no solution.

CONDITIONS FOR CONSISTENCY

Let the two equations be:

$$a_1x + b_1y + c_1 = 0$$

$$a_2x + b_2y + c_2 = 0$$

Then,

Relationship between coeff. or the pair of equations	Graph	Number of Solutions	Consistency of System
$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Intersecting lines	Unique solution	Consistent
$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	Parallel lines	No solution	Inconsistent
$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Co-incident lines	Infinite solutions	Consistent

2. On comparing the ratios $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ and $\frac{c_1}{c_2}$, find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincident:

(i) $5x - 4y + 8 = 0, 7x + 6y - 9 = 0$

(ii) $9x + 3y + 12 = 0, 18x + 6y + 24 = 0$

(iii) $6x - 3y + 10 = 0, 2x - y + 9 = 0$

Sol. (i) Equations are $5x - 4y + 8 = 0, 7x + 6y - 9 = 0$

Here $\frac{a_1}{a_2} = \frac{5}{7}$; $\frac{b_1}{b_2} = \frac{-4}{6}$; $\frac{c_1}{c_2} = \frac{8}{-9}$

$\Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ as $\frac{5}{7} \neq \frac{-4}{6}$.

\therefore Pair of lines represented by given equations are intersecting lines and they have exactly one solution.

(ii) $9x + 3y + 12 = 0, 18x + 6y + 24 = 0$

Here

$\frac{a_1}{a_2} = \frac{9}{18} = \frac{1}{2}$; $\frac{b_1}{b_2} = \frac{3}{6} = \frac{1}{2}$; $\frac{c_1}{c_2} = \frac{12}{24} = \frac{1}{2}$

$\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

\therefore Pair of equations represents coincident lines and having infinitely many solutions.

(iii) $6x - 3y + 10 = 0, 2x - y + 9 = 0$

Here $\frac{a_1}{a_2} = \frac{6}{2} = 3$; $\frac{b_1}{b_2} = \frac{-3}{-1} = 3$; $\frac{c_1}{c_2} = \frac{10}{9}$

$\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

\therefore It represents parallel lines and having no solution.

3. On comparing the ratios $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ and $\frac{c_1}{c_2}$, find out whether the following pair of linear equations are consistent, or inconsistent.

(i) $3x + 2y = 5$; $2x - 3y = 7$

(ii) $2x - 3y = 8$; $4x - 6y = 9$

(iii) $\frac{3}{2}x + \frac{5}{3}y = 7$; $9x - 10y = 14$

(iv) $5x - 3y = 11$; $-10x + 6y = -22$

(v) $\frac{4}{3}x + 2y = 8$; $2x + 3y = 12$

Sol. (i) $3x + 2y = 5$, $2x - 3y = 7$

Here $\frac{a_1}{a_2} = \frac{3}{2}$, $\frac{b_1}{b_2} = \frac{2}{-3}$, $\frac{c_1}{c_2} = \frac{-5}{-7} = \frac{5}{7}$

$\therefore \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ as $\frac{3}{2} \neq \frac{-2}{3}$

\therefore Pair of equations is consistent.

$$(ii) 2x - 3y = 8, 4x - 6y = 9$$

Here $\frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}$, $\frac{b_1}{b_2} = \frac{-3}{-6} = \frac{1}{2}$, $\frac{c_1}{c_2} = \frac{8}{9}$

$$\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

\therefore Pair of equations is inconsistent.

$$(iii) \frac{3}{2}x + \frac{5}{3}y = 7, 9x - 10y = 14$$

$$\frac{a_1}{a_2} = \frac{3}{2 \times 9} = \frac{1}{6}, \frac{b_1}{b_2} = -\frac{5}{3 \times 10} = -\frac{1}{6},$$

$$\frac{c_1}{c_2} = \frac{-7}{-14} = \frac{1}{2}$$

$$\therefore \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

\therefore Pair of equations is consistent.

Home assignment

- Ex. 3.2 Q. No 1 to 3. **AHA**
- 1. For what value of k, the pair of equations $4x - 3y = 9$, $2x + Ky = 11$ has no solution?
- 2. Calculate the area bounded by the line $x + y = 10$ and both the co-ordinate axes
- 3. Check graphically whether the pair of equations $3x - 2y + 2 = 0$ and $32x - y + 3 = 0$, is consistent. Also find the coordinates of the points where the graphs of the equations meet the Y-axis.
- 4. Find the condition for which the system of Equations $\frac{x}{a} + \frac{y}{b} = 1$ and $bx + ay = 4ab$ is inconsistent.

THANKING YOU

ODM EDUCATIONAL GROUP

