

SESSION : 18

CLASS : V

SUBJECT : MATHEMATICS

CHAPTER NUMBER: 8

CHAPTER NAME : FACTORS AND MULTIPLES

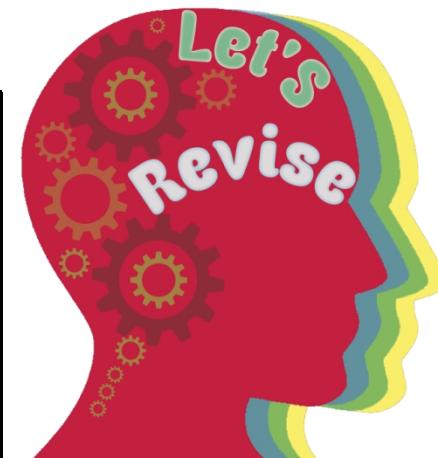
SUB-TOPIC : TEST OF DIVISIBILITY

Exercise 8 A Q.No.1 & 2

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org


Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

LEARNING OBJECTIVES :

Students will be able ;

To test the divisibility of a number by 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, and 15 using the rules of divisibility.

A number is Divisible by	If the last digit is
2	0, 2, 4, 6, 8
5	0, 5
10	0

A number is Divisible by	If the sum of its digit is divisible by
3	3
9	9

A number is Divisible by	If it is divisible by
6	2 and 3
12	3 and 4
15	3 and 5

TEST OF DIVISIBILITY: 4

If the number formed by its **last two digits** are divisible by 4

or

If the last two digits are **both 0**, then the numbers is divisible by 4.

Examples: 124, 416, 5440, 9600

TEST OF DIVISIBILITY: 8

If the number formed by its **last three digits** are divisible by 8

or

If the last three digits are **0**, then the numbers is divisible by 8.

Examples: 124, 416, 5440, 9600

TEST OF DIVISIBILITY: 11

If the **difference** between the sum of the digits at **odd places** (from the right) and the sum of the digits at **even places** (from the right) of the number is either **0** or **divisible by 11**, then the number is divisible by 11

Examples: 308, 1331, 61809, 6556... etc.

Number	Sum of the digits (at odd places) From the right	Sum of the digits (at even places) From the right	Difference
308	$8 + 3 = 11$	0	$11 - 0 = 11$
1331	$1 + 3 = 4$	$3 + 1 = 4$	$4 - 4 = 0$
61809	$9 + 8 + 6 = 23$	$0 + 1 = 1$	$23 - 1 = 22$
6556	$6 + 5 = 11$	$6 + 5 = 11$	$11 - 11 = 0$

EXERCISE- 8 (A)

1. From the numbers given below mark the number which are divisible and which are not divisible by the numbers given on the left.

		Numbers					
Divisible by		99	184	7065	12480	23343	12210
3		✓	✗	✓	✓	✓	✓
4		✗	✓	✗	✓	✗	✗
5		✗	✗	✓	✓	✗	✓
6		✗	✗	✗	✓	✗	✓
9		✓	✗	✓	✗	✗	✗
11		✓	✗	✗	✗	✗	✓
12		✗	✗	✗	✓	✗	✗
15		✗	✗	✓	✓	✗	✓

EXERCISE- 8 (A)

2. What is the smallest number which should be (i) subtracted from and (ii) added to:

a. **3646** to get a number divisible by **3** i. 1 ii. 2

Checking : $3 + 6 + 4 + 6 = 19$

$$19 - 1 = 18 \quad \text{or} \quad 19 + 2 = 21$$

b. **12642** to get a number divisible by **4** i. 2 ii. 2

c. **5213** to get a number divisible by **5** i. 3 ii. 2

EXERCISE- 8 (A)

2. What is the smallest number which should be (i) subtracted from and (ii) added to:

d. **7427** to get a number divisible by 6 i. 5 ii. 1

e. **9466** to get a number divisible by 9 i. 7 ii. 2

f. **26,303** to get a number divisible by 11 i. 2 ii. 9

HOME ASSIGNMENT:

- **Complete Exercise – 8 A in your note book.**

LEARNING OUTCOME :

Students are able to check the divisibility of a number by using the rules of tests of divisibility.

**THANKING YOU
ODM EDUCATIONAL GROUP**