

Chapter- 9

Interest:

(i) Simple interest: When interest is calculated on the original principal for any length of time, it is called simple interest.

- **Simple interest** = $(\text{Principal} \times \text{Time} \times \text{Rate})/100$. i.e. $S.I. = (P \times R \times T)/100$.
- Amount = Principal + Interest. ...
- Principal (P) = $(100 \times S.I.)/(R \times T)$
- Rate(R) = $(100 \times S.I.)/(T \times P)$
- Time (T) = $(100 \times S.I.)/(P \times R)$

Compound Interest:

1. Let Principal = P, Rate = R% per annum, Time = n years.

2. When interest is compound Annually:

$$\text{Amount} = P \left(1 + \frac{R}{100} \right)^n$$

3. When interest is compounded Half-yearly:

$$\text{Amount} = P \left[1 + \frac{(R/2)}{100} \right]^{2n}$$

4. When interest is compounded Quarterly:

$$\text{Amount} = P \left[1 + \frac{(R/4)}{100} \right]^{4n}$$

5. When interest is compounded Annually but time is in fraction, say $3\frac{2}{5}$ years.

$$\text{Amount} = P \left(1 + \frac{R}{100} \right)^3 \times \left(1 + \frac{\frac{2}{5}R}{100} \right)$$

6. When Rates are different for different years, say $R_1\%$, $R_2\%$, $R_3\%$ for 1st, 2nd and 3rd year respectively.

$$\text{Then, Amount} = P \left(1 + \frac{R_1}{100} \right) \left(1 + \frac{R_2}{100} \right) \left(1 + \frac{R_3}{100} \right).$$

7. Present worth of Rs. x due n years hence is given by:

$$\text{Present Worth} = \frac{x}{\left(1 + \frac{R}{100} \right)^n}$$