

PERIOD 5

MATHEMATICS

CHAPTER NUMBER :~ 8
CHAPTER NAME :~QUADRILATERALS

CHANGING YOUR TOMORROW

PREVIOUS KNOWLEDGE TEST

1. In a parallelogram show that the angle bisectors of two adjacent angles intersect at right angle.

LEARNING OUTCOME:~

1. Students will be able to develop expertise on application on properties of parallelogram.

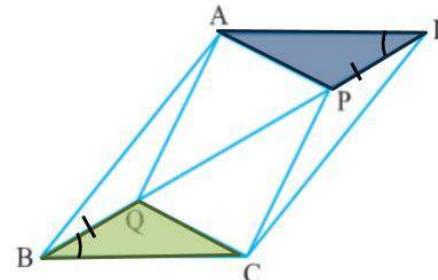
Ex 8.1, 9

In parallelogram ABCD, two points P and Q are taken on diagonal BD such that $DP = BQ$ Show that:

(i) $\Delta APD \cong \Delta CQB$

Given: ABCD is a parallelogram
where $DP = BQ$

To prove: $\Delta APD \cong \Delta CQB$



Proof:

Now, $AD \parallel BC$

(Opposite sides of
parallelogram are parallel)

and transversal BD.

$\angle ADP = \angle CBQ$ (Alternate angles)(1)

In ΔAPD and ΔCQB ,

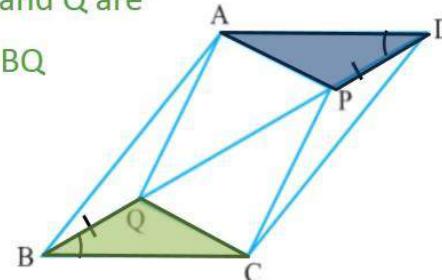
$AD = CB$	(Opposite sides of parallelogram are equal)
$\angle ADP = \angle CBQ$	(From (1))
$DP = BQ$	(Given)
$\therefore \Delta APD \cong \Delta CQB$	(SAS congruency)

Ex 8.1, 9

In parallelogram ABCD, two points P and Q are taken on diagonal BD such that $DP = BQ$

Show that:

(ii) $AP = CQ$



In previous part,

we proved that $\Delta APD \cong \Delta CQB$,

$\therefore AP = CQ$ (CPCT)

Ex 8.1, 9

In parallelogram ABCD, two points P and Q are taken on diagonal BD such that $DP = BQ$. Show that:

(iii) $\Delta AQB \cong \Delta CPD$

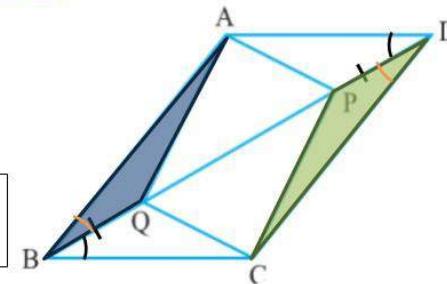
Since,

$AB \parallel DC$

(Opposite sides of parallelogram are parallel)

and transversal BD.

$\angle ABQ = \angle CDP$ (Alternate angles)(1)



In ΔAQB and ΔCPD ,

$AB = CD$ (Opposite sides of parallelogram are equal)

$\angle ABQ = \angle CDP$ (From (1))

$BQ = DP$ (Given)

$\therefore \Delta AQB \cong \Delta CPD$ (SAS congruency)

Ex 8.1, 9

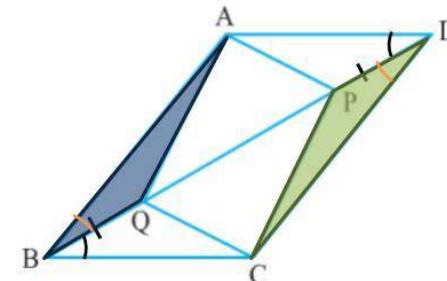
In parallelogram ABCD, two points P and Q are taken on diagonal BD such that $DP = BQ$. Show that:

(iv) $AQ = CP$

In previous part,

we proved that $\Delta AQB \cong \Delta CPD$,

$\therefore AQ = CP$ (CPCT)



Ex 8.1, 9

In parallelogram ABCD, two points P and Q are taken on diagonal BD such that $DP = BQ$. Show that:

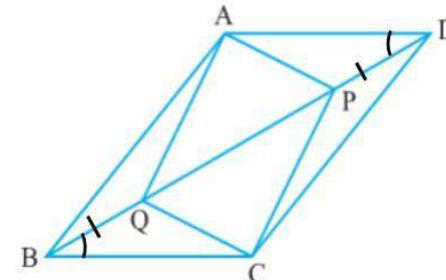
(v) APCQ is a parallelogram

In part (ii) & (iv) we proved that

$$AP = CQ$$

and

$$AQ = CP$$



Since both pairs of opposite sides in APCQ are equal,

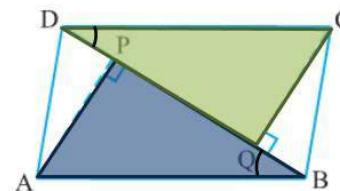
APCQ is a parallelogram.

Ex 8.1, 10

ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD. Show that

(i) $\Delta APB \cong \Delta CQD$

Given: ABCD is a parallelogram
with $AP \perp BD$ & $CQ \perp BD$



To prove: $\Delta APB \cong \Delta CQD$

Proof:

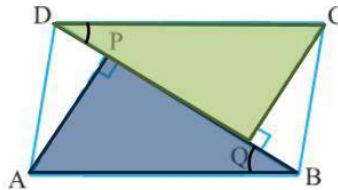
Now,

$AB \parallel DC$

(Opposite sides of
parallelogram are parallel)

and transversal BD.

$\angle ABP = \angle CDQ$, (Alternate angles) ... (1)



In $\triangle APB$ and $\triangle CQD$,

$$\angle APB = \angle CQD \quad (\text{Both are } 90^\circ)$$

$$\angle ABP = \angle CDQ \quad (\text{From (1)})$$

$$AB = CD \quad (\text{Opposite sides of parallelogram are equal})$$

$$\therefore \triangle APB \cong \triangle CQD \quad (\text{AAS congruence rule})$$

Ex 8.1, 10

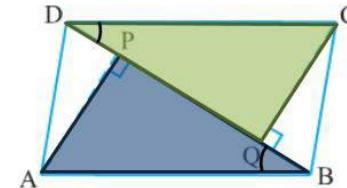
ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD. Show that

(ii) $AP = CQ$

In previous part,

we proved that $\Delta APB \cong \Delta CQD$,

$\therefore AP = CQ$ (CPCT)



Hence proved

Ex 8.1, 11

In $\triangle ABC$ and $\triangle DEF$, $AB = DE$, $AB \parallel DE$, $BC = EF$ and $BC \parallel EF$.

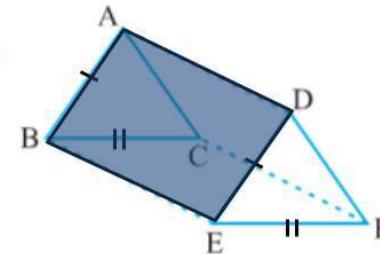
Vertices A, B and C are joined to vertices D, E and F respectively

Show that

(i) quadrilateral ABED is a parallelogram

Given: $\triangle ABC$ and $\triangle DEF$,

$AB = DE$, $AB \parallel DE$, $BC = EF$ and $BC \parallel EF$



To prove: ABED is a parallelogram

Proof:

Given that $AB = DE$ and $AB \parallel DE$.

\Rightarrow One pair of opposite sides are equal and parallel to each other

\therefore ABED is a parallelogram

Hence proved

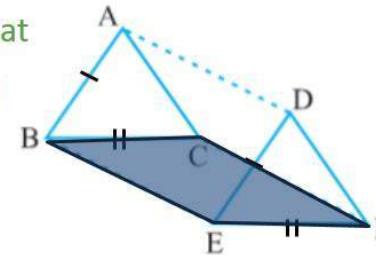
Ex 8.1, 11

In $\triangle ABC$ and $\triangle DEF$, $AB = DE$, $AB \parallel DE$, $BC = EF$ and $BC \parallel EF$.

Vertices A, B and C are joined to

vertices D, E and F respectively. Show that

(ii) quadrilateral BEFC is a parallelogram



Given that $BC = EF$ and $BC \parallel EF$.

\Rightarrow One pair of opposite sides are equal and parallel to each other

\therefore BEFC is a parallelogram

Hence proved

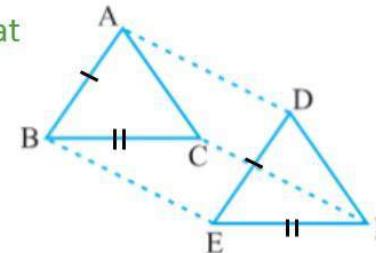
Ex 8.1, 11

In $\triangle ABC$ and $\triangle DEF$, $AB = DE$, $AB \parallel DE$, $BC = EF$ and $BC \parallel EF$.

Vertices A, B and C are joined to

vertices D, E and F respectively. Show that

(iii) $AD \parallel CF$ and $AD = CF$



From part(i), we proved that

$ABED$ is a parallelogram

So, $AD = BE$ and $AD \parallel BE$

(Opposite sides of parallelogram are equal and parallel) ... (1)

From part(ii), we proved that

$BEFC$ is a parallelogram

So, $BE = CF$ and $BE \parallel CF$

(Opposite sides of parallelogram are equal and parallel) ... (2)

Hence From (1) & (2)

$\therefore AD = CF$ and $AD \parallel CF$

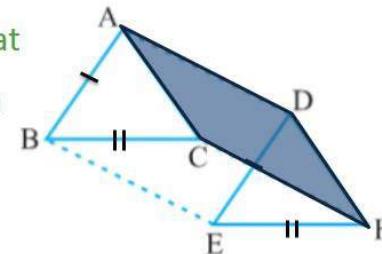
Ex 8.1, 11

In $\triangle ABC$ and $\triangle DEF$, $AB = DE$, $AB \parallel DE$, $BC = EF$ and $BC \parallel EF$.

Vertices A, B and C are joined to

vertices D, E and F respectively. Show that

(iv) quadrilateral ACFD is a parallelogram



In part (iii) we proved that

$AD = CF$ and $AD \parallel CF$

\Rightarrow One pair of opposite sides are equal and parallel to each other

\therefore ACFD is a parallelogram

Therefore, quadrilateral ACFD is a parallelogram.

Ex 8.1, 11

In $\triangle ABC$ and $\triangle DEF$, $AB = DE$, $AB \parallel DE$, $BC = EF$ and $BC \parallel EF$.

Vertices A, B and C are joined to

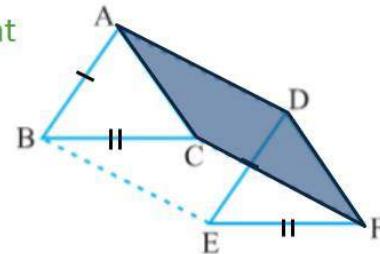
vertices D, E and F respectively. Show that

(v) $AC = DF$

From part(iv), $ACFD$ is a parallelogram

So, $AC = DF$ (Opposite sides of parallelogram are equal)

Hence proved



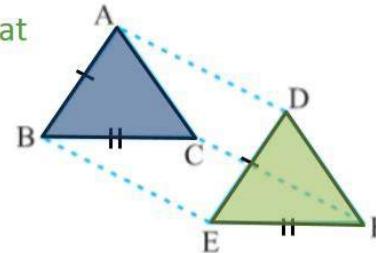
Ex 8.1, 11

In $\triangle ABC$ and $\triangle DEF$, $AB = DE$, $AB \parallel DE$, $BC = EF$ and $BC \parallel EF$.

Vertices A, B and C are joined to

vertices D, E and F respectively .Show that

(vi) $\triangle ABC \cong \triangle DEF$.



In $\triangle ABC$ and $\triangle DEF$,

$AB = DE$ (Given)

$BC = EF$ (Given)

$AC = DF$ (Proved in part(v))

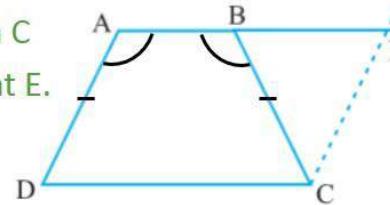
$\therefore \triangle ABC \cong \triangle DEF$ (SSS congruence rule)

Ex 8.1, 12

ABCD is a trapezium in which $AB \parallel CD$ and $AD = BC$. Show that

(i) $\angle A = \angle B$

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.



Given: ABCD is a trapezium where

$AB \parallel CD$ and $AD = BC$

To prove: $\angle A = \angle B$

Construction: Extend AB and draw a line through C parallel to DA intersecting AB produced at E

Proof:

$AD \parallel CE$ (From construction)

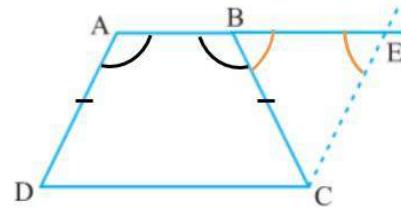
& $AE \parallel DC$ (As $AB \parallel DC$, & AB is extended)

In AECD, both pair of opposite sides are parallel,

AECD is a parallelogram

$\therefore AD = CE$ (Opposite sides of parallelogram are equal)

But $AD = BC$ (Given)



$\Rightarrow BC = CE$

So, $\angle CEB = \angle CBE$ (In $\triangle BCE$, Angles opposite to equal sides are equal) ... (1)

For $AD \parallel CE$,

& AE is the transversal

$$\angle A + \angle CEB = 180^\circ$$

(Interior angle on same side of transversal is supplementary)

$$\angle A = 180^\circ - \angle CEB \quad \dots (2)$$

Also AE is a line,

$$\text{So, } \angle B + \angle CBE = 180^\circ \text{ (Linear pair)}$$

$$\angle B + \angle CEB = 180^\circ \quad \text{(From (1))}$$

$$\angle B = 180^\circ - \angle CEB \quad \dots (3)$$

From (2) & (3)

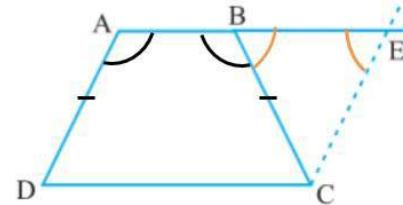
$$\angle A = \angle B$$

Hence proved

Ex 8.1, 12

ABCD is a trapezium in which $AB \parallel CD$ and $AD = BC$. Show that

(ii) $\angle C = \angle D$



For $AB \parallel CD$,

& AD is the transversal

$$\angle A + \angle D = 180^\circ \quad (\text{Interior angle on same side of transversal is supplementary})$$

$$\angle D = 180^\circ - \angle A \quad \dots(1)$$

For $AB \parallel CD$,

& BC is the transversal

$$\angle B + \angle C = 180^\circ \quad (\text{Interior angle on same side of transversal is supplementary})$$

$$\angle C = 180^\circ - \angle B$$

$$\angle C = 180^\circ - \angle A \quad (\text{As } \angle A = \angle B \text{ proved in (i)}) \quad \dots(2)$$

From (1) & (2)

$$\angle D = \angle C$$

Hence proved

Ex 8.1, 12

ABCD is a trapezium in which $AB \parallel CD$ and $AD = BC$. Show that

(iii) $\Delta ABC \cong \Delta BAD$

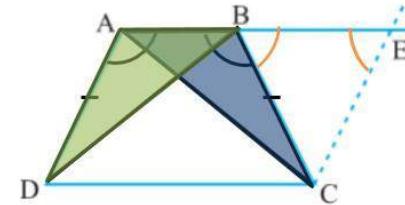
In ΔABC and ΔBAD ,

$$AB = BA \quad (\text{Common})$$

$$\angle B = \angle A \quad (\text{Proved in part(i)})$$

$$BC = AD \quad (\text{Given})$$

$\therefore \Delta ABC \cong \Delta BAD$ (SAS congruence rule)



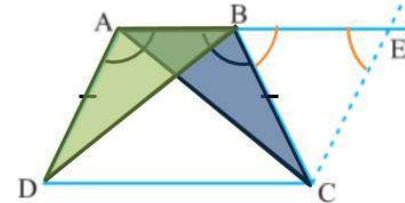
Ex 8.1, 12

ABCD is a trapezium in which $AB \parallel CD$ and $AD = BC$. Show that

(iv) diagonal $AC =$ diagonal BD

In the last part we proved
that $\triangle ABC \cong \triangle BAD$

$\therefore AC = BD$ (CPCT)



HOMEWORK ASSIGNMENT

Exercise 8.1
Question number 8,9,10

AHA

1.P is the midpoint of the side CD of a parallelogram ABCD .A line through C parallel to PA intersects AB at Q and DA produced at R .Prove that $DA=AR$ and $CQ=QR$.

**THANKING YOU
ODM EDUCATIONAL GROUP**