

MODEL LESSON

MATHEMATICS

CHAPTER NUMBER :~ 2

CHAPTER NAME :~ POLYNOMIALS

SUB TOPIC :~ ZEROES OF POLYNOMIAL

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

1. Find the degree of the following polynomials

- a) $x^5 - x^4 + 3$
- b) 2

2. Classify the polynomials into linear, quadratic, cubic polynomials:-

- a. $x^2 + x$
- b. $1+x$
- c. $7x^2$
- d. $x - x^3$

LEARNING OUTCOME:-

Students will learn

- a)Zeroes of the Polynomials.

EXERCISE~2.1

Question 1.

Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

- (i) $4x^2 - 3x + 7$
- (ii) $y^2 + \sqrt{2}$
- (iii) $3\sqrt{t} + t\sqrt{2}$
- (iv) $y + 2y$
- (v) $x^{10} + y^3 + t^{50}$

Solution:

(i) We have $4x^2 - 3x + 7 = 4x^2 - 3x + 7x^0$
It is a polynomial in one variable i.e., x
because each exponent of x is a whole number.

(ii) We have $y^2 + \sqrt{2} = y^2 + \sqrt{2}y^0$
It is a polynomial in one variable i.e., y
because each exponent of y is a whole number.

(iii) We have $3\sqrt{t} + t\sqrt{2} = 3\sqrt{t^{1/2}} + \sqrt{2} \cdot t$

It is not a polynomial, because one of the exponents of t is $\frac{1}{2}$, which is not a whole number.

(iv) We have $y + y + 2y = y + 2y^{-1}$

It is not a polynomial, because one of the exponents of y is -1 , which is not a whole number.

(v) We have $x^{10} + y^3 + t^{50}$

Here, exponent of every variable is a whole number, but $x^{10} + y^3 + t^{50}$ is a polynomial in x , y and t , i.e., in three variables.

So, it is not a polynomial in one variable.

Question 2.

Write the coefficients of x^2 in each of the following

- (i) $2 + x^2 + x$
- (ii) $2 - x^2 + x^3$
- (iii) $\pi 2 x^2 + x$
- (iv) $\sqrt{2} x - 1$

Solution:

(i) The given polynomial is $2 + x^2 + x$.

The coefficient of x^2 is 1.

(ii) The given polynomial is $2 - x^2 + x^3$.

The coefficient of x^2 is -1.

(iii) The given polynomial is $\pi 2 x^2 + x$.

The coefficient of x^2 is $\pi 2$.

(iv) The given polynomial is $\sqrt{2} x - 1$.

The coefficient of x^2 is 0.

Question 3.

Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Solution:

- (i) A binomial of degree 35 can be $3x^{35} - 4$.
- (ii) A monomial of degree 100 can be $\sqrt{2}y^{100}$.

Question 4.

Write the degree of each of the following polynomials.

(i) $5x^3 + 4x^2 + 7x$

(ii) $4 - y^2$

(iii) $5t - \sqrt{7}$

(iv) 3

Solution:

(i) The given polynomial is $5x^3 + 4x^2 + 7x$.

The highest power of the variable x is 3.

So, the degree of the polynomial is 3.

(ii) The given polynomial is $4 - y^2$. The highest power of the variable y is 2.

So, the degree of the polynomial is 2.

(iii) The given polynomial is $5t - \sqrt{7}$. The highest power of variable t is 1. So, the degree of the polynomial is 1.

(iv) Since, $3 = 3x^0$ $[\because x^0 = 1]$

So, the degree of the polynomial is 0.

Question 5.

Classify the following as linear, quadratic and cubic polynomials.

(i) $x^2 + x$

(ii) $x - x^3$

(iii) $y + y^2 + 4$

(iv) $1 + x$

(v) $3t$

(vi) r^2

(vii) $7x^3$

Solution:

- (i) The degree of $x^2 + x$ is 2. So, it is a quadratic polynomial.
- (ii) The degree of $x - x^3$ is 3. So, it is a cubic polynomial.
- (iii) The degree of $y + y^2 + 4$ is 2. So, it is a quadratic polynomial.
- (iv) The degree of $1 + x$ is 1. So, it is a linear polynomial.
- (v) The degree of $3t$ is 1. So, it is a linear polynomial.
- (vi) The degree of r^2 is 2. So, it is a quadratic polynomial.
- (vii) The degree of $7x^3$ is 3. So, it is a cubic polynomial.

<https://www.youtube.com/watch?v=dnZqhZZivGs>

“As great a genius as Archimedes could not invent analytical geometry, for the algebraic knowledge necessary for such an achievement was not available in his time...”

~ Nathan A. Court...

Zeroes of the Polynomials

Consider a polynomial, say $3x - 9$

Denote it by $p(x)$ i.e. we have $p(x) = 3x - 9$

Now, value of the polynomial $p(x)$ at 1 is given by putting $x = 1$ in $p(x)$

We write,

$$\begin{aligned}p(1) &= 3(1) - 9 \\&= 3 - 9 \\&= -6\end{aligned}$$

In general, if $p(x)$ is a polynomial then $p(a)$ is the value of the polynomial at $x = a$.

In the above polynomial, $p(x) = 3x - 9$

$$p(3) = 3(3) - 9 = 0$$

We say that $x = 3$ is a zero of the polynomial $p(x)$

Formal Definition- A number c is zero of the polynomial $p(x)$ if $p(c) = 0$

- If $p(x)$ is a polynomial then $p(x) = 0$ is called the **polynomial equation**.
Then if the number c is zero of the polynomial $p(x)$ then c is called the **root of the polynomial equation** $p(x) = 0$

Important Notes

- Finding zero of the polynomial $p(x)$ is the same as finding the root of the polynomial equation $p(x) = 0$.
So, to find the zero of the polynomial $p(x)$, we simply solve the equation $p(x) = 0$.
- Consider a constant polynomial $p(x) = b$ where b is any non-zero constant.
Then, for any value of x , the value of the polynomial shall remain the same i.e. b .
So, we conclude that a non-zero constant polynomial has no zero.
- The number 0 can be zero of a polynomial.
(For example, $p(x) = 4x$. Here, at $x = 0$, $p(0) = 4(0) = 0$
- The zero of the polynomial does not necessarily has to be the number 0.
- (For example, $p(x) = 2x - 4$. Here, at $x = 2$, $p(2) = 2(2) - 4 = 0$. Clearly, $x = 2$ is zero of the polynomial $p(x)$ and $x = 2$ is a non-zero number.
- Every linear polynomial i.e. polynomial of the form $a x + b$ where a, b are constants and a is non-zero, has one and only one zero.
Consider, $p(x) = a x + b$
The polynomial equation becomes, $p(x) = a x + b = 0$
On solving, we get $x = -\frac{b}{a}$ which is the root of the polynomial equation $p(x) = 0$ and hence, is the zero of the polynomial $p(x)$.
- A polynomial can have more than one zero.

Evaluation:

1. Find the values of the polynomials if $x=1$:-

$$a. 5x^2 + 3x + 7 \quad b. 5x^3 - 2x^2 + 3x - 2$$

HOMEWORK:-

EXERCISE – 2.2

AHA:~

1. If $x=0$ and $x=1$ are roots of the polynomial

$f(x)=2x^3 - 5x^2 + ax + b$ find a and b .

2. Find integral roots of the polynomial

$x^3 - 6x^2 + 11x - 6$.

3. Find rational roots of the polynomial $f(x)=$

$2x^3 + x^2 - 7x - 6$

THANKING YOU
ODM EDUCATIONAL GROUP