

PERIOD~5

MATHEMATICS

CHAPTER NUMBER :~ 2

CHAPTER NAME :~ POLYNOMIALS

SUB TOPIC :~ FACTOR THEOREM

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

a) Find the remainder when $x^4 + x^3 - 2x^2 + x + 1$ is divided by $x - 1$

LEARNING OUTCOME:~

Students will learn

- a) factor theorem.

Question 2.

Find the remainder when $x^3 - ax^2 + 6x - a$ is divided by $x - a$.

Solution:

We have, $p(x) = x^3 - ax^2 + 6x - a$ and zero of $x - a$ is a .

$$\begin{aligned}\therefore p(a) &= (a)^3 - a(a)^2 + 6(a) - a \\ &= a^3 - a^3 + 6a - a = 5a\end{aligned}$$

Thus, the required remainder is $5a$.

Question 3.

Check whether $7 + 3x$ is a factor of $3x^3 + 7x$.

Solution:

We have, $p(x) = 3x^3 + 7x$. and zero of $7 + 3x$ is $-7/3$.

$$\begin{aligned}\therefore p\left(\frac{-7}{3}\right) &= 3\left(\frac{-7}{3}\right)^3 + 7\left(\frac{-7}{3}\right) \\ &= 3\left(\frac{-343}{27}\right) + \left(\frac{-49}{3}\right) = -\frac{343}{9} - \frac{49}{3} = -\frac{490}{9}\end{aligned}$$

Since, $(-490/9) \neq 0$

i.e. the remainder is not 0.

$\therefore 3x^3 + 7x$ is not divisible by $7 + 3x$.

Thus, $7 + 3x$ is not a factor of $3x^3 + 7x$.

<https://www.youtube.com/watch?v=4YXE7HDyInM>

“As great a genius as Archimedes could not invent analytical geometry, for the algebraic knowledge necessary for such as achievement was not available in his time...”

~Nathan A. Court...

Factorization of Polynomials

Factor Theorem- If $p(x)$ is a polynomial of degree n where n is greater than or equal to one and a is any real number then-

- 1) $x - a$ is a factor of $p(x)$ if $p(a) = 0$
- 2) $p(a) = 0$ if $x - a$ is a factor of $p(x)$

Proof-

Using Remainder theorem, we can write-

$$p(x) = [(x - a) \times q(x)] + p(a) \quad \text{Here, } r(x) = r = p(a)$$

(1) Suppose, $p(a) = 0$. Then $p(x) = (x - a) \times q(x)$

Clearly, $x - a$ is a factor of $p(x)$

(2) Suppose $x - a$ is a factor of $p(x)$. Then we can write, $p(x) = (x - a) \times g(x)$ for some polynomial $g(x)$. So, $p(a) = 0$

Applications of Factor Theorem

Example 1. Find the value of k , if $x - 1$ is a factor of $4x^3 + 3x^2 - 4x + k$

Solution: By Factor theorem, $p(1) = 0$

$$\begin{aligned}p(1) &= 4(1) + 3(1) - 4(1) + k = 0 \\K &= -3\end{aligned}$$

Factorization of Quadratic polynomials using Splitting the middle term method

Consider the quadratic polynomial $a x^2 + b x + c$

Suppose $(p x + q)$ and $(r x + s)$ be its factors.

So we can write, $a x^2 + b x + c = (p x + q) \times (r x + s)$

On comparing the coefficients of the like terms in L.H.S and R.H.S we get,

$a = p r$, $b = p s + q r$, $c = q s$

And clearly, $(p s) \times (q r) = (p r) \times (q s) = (a c)$.

So, to factorize the quadratic polynomial, we need to write b as the sum of two numbers whose product is $(a c)$

For example- Factorize $6x^2 + 17x + 5$ by-

- 1) Splitting the middle term method
- 2) Factor theorem

Solution-

1) We can write $6x^2 + 17x + 5 = 6x^2 + (15 + 2)x + 5$
 $= 6x^2 + 15x + 2x + 5$
 $= 3x(2x + 5) + 1(2x + 5)$
 $= (3x + 1)(2x + 5)$

2) We can write $6x^2 + 17x + 5 = 6(x^2 + (17/6)x + (5/6))$

Taking, $p(x) = x^2 + (17/6)x + (5/6)$

So, $6x^2 + 17x + 5 = 6p(x)$

Suppose a and b are zeroes of $p(x)$. Then $x - a$ and $x - b$ are factors of $p(x)$ and we have

$p(x) = (x - a)(x - b)$

So, $6x^2 + 17x + 5 = 6(x - a)(x - b) \longrightarrow (*)$

On comparing the coefficients of like terms, we get, $a + b = 5/6$

Possibilities for the values of a and b satisfying $a + b = 5/6$ are- $\frac{\pm 1}{2}, \frac{\pm 1}{3}, \frac{\pm 5}{3}, \frac{\pm 5}{2}, \pm 1$

Also, these values of a and b must satisfy $p(a) = 0$ and $p(b) = 0$

So, by checking all the values found above, we get that $a = -1/3$ and $b = -5/2$ satisfies the above conditions. So, $(*)$, becomes- $6x^2 + 17x + 5 = (3x + 1)(2x + 5)$

To factorize a cubic polynomial $p(x)$, we first find a zero of the polynomial by hit and trial method (by putting different values of x in the polynomial equation $p(x) = 0$)

Then the obtained root of the polynomial equation say $x = a$ (or simply, the zero of the polynomial $p(x)$) implies that $x - a$ is a factor of $p(x)$.

So we can write, $p(x) = (x - a) g(x) \longrightarrow (**)$

where $g(x)$ is a polynomial such that the degree of $g(x) <$ degree of $p(x)$

Here, as degree of $p(x) = 3$ So, degree of $g(x) = 2$ i.e. $g(x)$ is a quadratic polynomial and using factor theorem or splitting the middle term method we can factorize $g(x)$ and thus we get the desired factorization by putting the resultant $g(x)$ in (**)

Evaluation:-

1. Find the value of 'k' if $x-1$ is a factor of $4x^3 + 3x^2 - 4x - k$.
2. Factorize $6x^2 + 17x + 5$ by splitting the middle term and by using factor theorem.

HOMEWORK:-EXERCISE – 2.4
QUESTION NUMBER-1,2,3

AHA:~

1. For what value of 'a' is $2x^3 + ax^2 - 11x + a + 3$ is exactly divisible by $(2x - 1)$?
2. Find the value of 'a' and 'b' so that the polynomial $x^3 + 10x^2 + ax + a$ is exactly divisible by $x - 1$ and $x - 2$.

**THANKING YOU
ODM EDUCATIONAL GROUP**