

PERIOD~1

MATHEMATICS

CHAPTER NUMBER :~ 4

CHAPTER NAME :~ LINEAR EQUATIONS IN TWO VARIABLES

SUB TOPIC :~ INTRODUCTION

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

LEARNING OUTCOME:-

Students will be able to learn

- a. The general form of linear equations in two variables
- b. The formation of linear equations when statements are given

POLYNOMIALS:-

Let x be a variable (literal), n be a integer and $a_0, a_1, a_2, \dots, a_n$ be constants (real numbers). Then, $a_nx_n + a_{n-1}x^{n-1}$ is known as a polynomial in variable x .

VARIABLES:-

A term or a quantity which can take any real value in a particular situation or in a given problem is called a variable.

Variables are generally denoted by the letters x, y, z , etc.

CONSTANT:-

A term or a quantity whose value remains same throughout a particular situation or in a given problem is called a constant.

Constants are generally denoted by letters a, b, c , etc.

Example	Variable	Terms	No: of terms	Coefficient	Degree
A) $5x$	x	$5x$	1	Coefficient of x is 5	1
B) $2y^3 + 9y^2 - 4$	y	$2y^3$ $9y^2$ - 4	3	Coefficient of y^3 is 2 Coefficient of y^2 is 9 Coefficient of 1 is - 4	3
C) $-10z^0$ ($= -10$)	z	- 10	1	Coefficient of 1 is - 10	0
D) $x^2 - x$	x	x^2 - x	2	Coefficient of x^2 is 1 Coefficient of x is - 1	2

- **Monomials**- Polynomials having only one term. Example- A) and C)
- **Binomials**- Polynomials having only two terms. Example- D)
- **Trinomials**- Polynomials having only three terms. Example- B)
- **Linear Polynomial**- Polynomial having degree 1. Example- A)
- **Quadratic Polynomial**- Polynomial having degree 2. Example- D)
- **Cubic Polynomial**- Polynomial having degree 3. Example- B)
- C) is also an example of a (non-zero) constant polynomial and its degree is 0. In particular, the constant polynomial 0 is called the **Zero Polynomial** and whose degree is not defined.

Important Notes:

- ✓ A linear polynomial has the form-
 $a x + b$ where a, b are constants and a is non-zero
- ✓ A quadratic polynomial has the form-
 $a x^2 + b x + c$ where a, b, c are constants and a is non-zero
- ✓ A cubic polynomial has the form-
 $a x^3 + b x^2 + c x + d$ where a, b, c, d are constants and a is non-zero

Generally, a polynomial in one variable of degree n has the form-

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

- ✓ If $a_0 = a_1 = \dots = a_n = 0$ then the polynomial is called a zero polynomial denoted by 0.
- ✓ Degree of non-zero constant polynomial is zero.
- ✓ Only zero polynomial is the constant polynomial whose degree is not defined.

Evaluation:

Question: 1. Find the degree of the following polynomials:-

- a) $x^5 - x^4 + 3$
- b) 2

2. Classify the polynomials into linear, quadratic, cubic polynomials:-

- a. $x^2 + x$
- b. $1+x$
- c. $7x^2$
- d. $x - x^3$

HOMEWORK:-
EXERCISE - 2.1

AHA:~

Give 2 examples of :

Linear polynomial

Quadratic polynomial

Cubic polynomial

Biquadratic polynomial

**THANKING YOU
ODM EDUCATIONAL GROUP**