

SUB TOPIC: SUBSET, SUPER SET , PROPER SUBSET, UNIVERSAL SET

SUBJECT : MATHEMATICS

CHAPTER NUMBER: 13

CHAPTER NAME :SET CONCEPTS

CHANGING YOUR TOMORROW

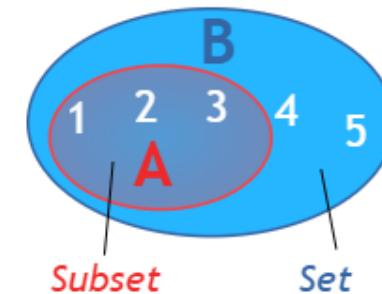
LEARNING OUTCOME

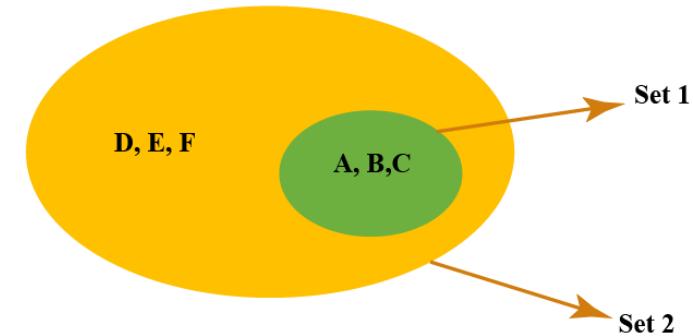
Students will be able to

Define and differentiate subset, superset, proper subset , universal set.

PREVIOUS CONNECT

- Which of the following represents the null set?
- { 0}, 0 , { }




SUBSET

Set A is said to be a subset of Set B if all the elements of Set A are also present in Set B.

In other words, set A is contained inside Set B.

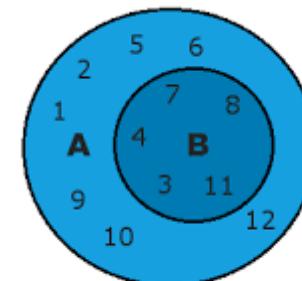
Example: If set A has {X, Y} and set B has {X, Y, Z}, then A is the subset of B because elements of A are also present in set B.

Subset Symbol

In set theory, a subset is denoted by the symbol \subseteq and read as 'is a subset of'.

Using this symbol we can express subsets as follows:

$A \subseteq B$; which means Set A is a subset of Set B.


Note: A subset can be equal to the set. That is, a subset can contain all the elements that are present in the set.

Superset Definition

In set theory, set A is considered as the superset of B, if all the elements of set B are the elements of set A.

For example, if set A = {1, 2, 3, 4} and set B = {1, 3, 4}, we can say that set A is the superset of B. As the elements of B [(i.e.,)1, 3, 4] are in set A.

We can also say that B is not a superset of A.

A is SuperSet of B

Superset Symbol

The superset relationship is represented using the symbol “ \supset ”. For instance, the set A is the superset of set B, and it is symbolically represented by $A \supset B$.

Consider another example,

$X = \{\text{set of polygons}\}$

$Y = \{\text{set of irregular polygons}\}$

Then X is the superset of Y ($X \supset Y$). In other words, we can say that Y is a subset of X ($Y \subset X$).

Proper Subset Symbol

A proper subset is denoted by \subset and is read as 'is a proper subset of'. Using this symbol, we can express a proper subset for set A and set B as;

$$A \subset B$$

How many subsets and proper subsets does a set have?

If a set has “n” elements, then the number of subset of the given set is 2^n and the number of proper subsets of the given subset is given by $2^n - 1$.

Consider an example, If set A has the elements, $A = \{a, b\}$, then the proper subset of the given subset are $\{\}$, $\{a\}$, and $\{b\}$.

Here, the number of elements in the set is 2.

We know that the formula to calculate the number of proper subsets is $2^n - 1$.

$$= 2^2 - 1$$

$$= 4 - 1$$

$$= 3$$

Thus, the number of proper subset for the given set is 3 ($\{\}$, $\{a\}$, $\{b\}$).

NUMBER OF SUBSETS AND NUMBER OF PROPER SUBSETS OF A GIVEN SET

If a set has “n” elements, then the number of subset of the given set is 2^n and the number of proper subsets of the given subset is given by 2^n-1 .

Consider an example, If set A has the elements, $A = \{a, b\}$, then the proper subset of the given subset are { }, {a}, and {b}. Here, the number of elements in the set is 2

UNIVERSAL SET

There happens to be a set 'U' that contains all the elements under consideration. Such a set is called the universal set.

For example :

$A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6, 7, 8, 9\}$. We can say that they are both contained in their universal set, which is a set of natural numbers.

In plane geometry, the set of all points in the plane is the universal set.

EVALUATION QUESTIONS

Exercise 13C page: 154

1. Fill in the blanks:

(i) If each element of set P is also an element of set Q, then P is said to be of Q and Q is said to be of P.

(ii) Every set is a of itself.

(iii) The empty set is a of every set.

(iv) If A is proper subset of B, then $n(A) \dots n(B)$.

Solution:

Solution:

- (i) If each element of set P is also an element of set Q, then P is said to be a subset of Q and Q is said to be the superset of P.
- (ii) Every set is a subset of itself.
- (iii) The empty set is a subset of every set.
- (iv) If A is proper subset of B, then $n(A)$ is less than $n(B)$.

2. If $A = \{5, 7, 8, 9\}$; then which of the following are subsets of A?

- (i) $B = \{5, 8\}$
- (ii) $C = \{0\}$
- (iii) $D = \{7, 9, 10\}$
- (iv) $E = \{ \}$
- (v) $F = \{8, 7, 9, 5\}$

Solution:

(i) $B = \{5, 8\}$

Hence, $B \subset A$.

(ii) $C = \{0\}$ and $C \cap A = \emptyset$

Hence, $C \not\subset A$.

(iii) $D = \{7, 9, 10\}$

Hence, $D \not\subset A$.

(iv) $E = \{ \}$

Hence, $E \subset A$ as we know that an empty set is a subset of every set.

(v) $F = \{8, 7, 9, 5\}$

Hence, $F \subset A$ as every set is a subset of itself.

Therefore, (i), (iv) and (v) are subsets of A.

3. If $P = \{2, 3, 4, 5\}$; then which of the following are proper subsets of P ?

(i) $A = \{3, 4\}$

(ii) $B = \{ \}$

(iii) $C = \{23, 45\}$

(iv) $D = \{6, 5, 4\}$

(v) $E = \{0\}$

Solution:

Solution:

It is given that $P = \{2, 3, 4, 5\}$

(i) $A = \{3, 4\}$

(ii) $B = \{\}$

(iii) $C = \{23, 45\}$

(iv) $D = \{6, 5, 4\}$

(v) $E = \{0\}$

Here only A and B are the proper subsets of P.

4. If $A = \{\text{even numbers less than } 12\}$,

$B = \{2, 4\}$,

$C = \{1, 2, 3\}$,

$D = \{2, 6\}$ and $E = \{4\}$

State which of the following statements are true :

- (i) $B \subset A$
- (ii) $C \subseteq A$
- (iii) $D \subset C$
- (iv) $D \not\subset A$
- (v) $E \supseteq B$
- (vi) $A \supseteq B \supseteq E$

Solution:

$$A = \{\text{even numbers less than } 12\} = \{2, 4, 6, 8, 10\}$$

$$B = \{2, 4\}$$

$$C = \{1, 2, 3\}$$

$$D = \{2, 6\} \text{ and } E = \{4\}$$

(i) $B \subset A$ is true.

(ii) $C \subseteq A$ is false.

(iii) $D \subset C$ is false.

(iv) $D \not\subset A$ is false.

(v) $E \supseteq B$ is false

(vi) $A \supseteq B \supseteq E$ is true

5. Given $A = \{a, c\}$, $B = \{p, q, r\}$ and $C = \text{Set of digits used to form number } 1351$.

Write all the subsets of sets A, B and C.

Solution:

$$A = \{a, c\}$$

Hence, the subsets are $\{\}$ or Φ , $\{a\}$, $\{c\}$ and $\{a, c\}$.

$$B = \{p, q, r\}$$

Hence, the subsets are $\{\}$ or Φ , $\{p\}$, $\{q\}$, $\{r\}$, $\{p, q\}$, $\{p, r\}$, $\{q, r\}$ and $\{p, q, r\}$.

$$C = \text{Set of digits used to form number } 1351$$

Hence, the subsets are $\{\}$ or Φ , $\{1\}$, $\{3\}$, $\{5\}$, $\{1, 3\}$, $\{3, 5\}$, $\{1, 5\}$ and $\{1, 3, 5\}$.

HOMEWORK

- EX13 C
- Q.NO. 1to 5
- **AHA**

Given that $N= \{1,2,3, \dots, 100\}$. Then write

- (i) the subset of N whose elements are even numbers.
- (ii) the subset of N whose element are perfect square numbers.

**THANKING YOU
ODM EDUCATIONAL GROUP**