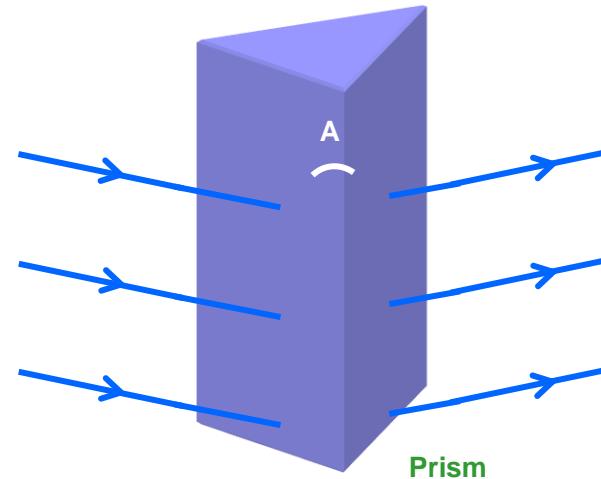
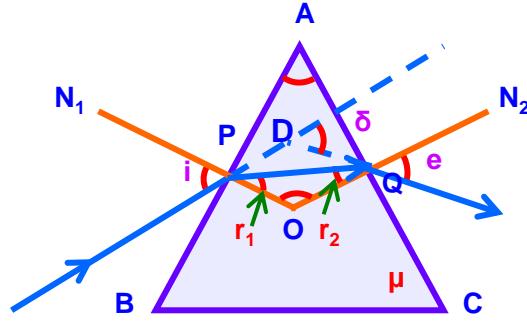


Refraction of light through Prism

XII- SCIENCE


SUBJECT : PHYSICS
CHAPTER NUMBER: 9
CHAPTER NAME : RAY OPTICS


CHANGING YOUR TOMORROW

Refraction of Light through Prism:

Refraction of Light through Prism:

In quadrilateral APOQ,

$$A + O = 180^\circ \quad \dots\dots(1)$$

(since N_1 and N_2 are normal)

In triangle OPQ,

$$r_1 + r_2 + O = 180^\circ \quad \dots\dots(2)$$

In triangle DPQ,

$$\delta = (i - r_1) + (e - r_2)$$

$$\delta = (i + e) - (r_1 + r_2) \quad \dots\dots(3)$$

From (1) and (2),

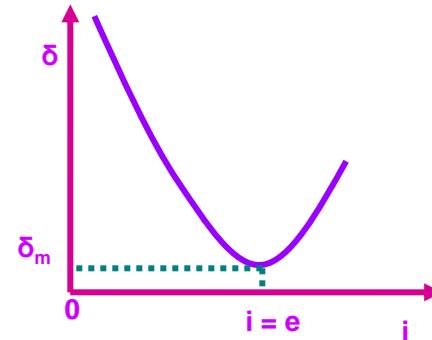
$$A = r_1 + r_2$$

From (3),

$$\delta = (i + e) - (A)$$

or $i + e = A + \delta$

Sum of angle of incidence and angle of emergence is equal to the sum of angle of prism and angle of deviation.


Variation of angle of deviation with angle of incidence:

When angle of incidence increases, the angle of deviation decreases.

At a particular value of angle of incidence the angle of deviation becomes minimum and is called 'angle of minimum deviation'.

At δ_m , $i = e$ and $r_1 = r_2 = r$ (say)

After minimum deviation, angle of deviation increases with angle of incidence.

Refractive Index of Material of Prism:

$$A = r_1 + r_2$$

$$A = 2r$$

$$r = A/2$$

$$i + e = A + \delta$$

$$2i = A + \delta_m$$

$$i = (A + \delta_m)/2$$

According to Snell's law,

$$\mu = \frac{\sin i}{\sin r_1} = \frac{\sin i}{\sin r}$$

$$\mu = \frac{\sin \frac{(A + \delta_m)}{2}}{\sin \frac{A}{2}}$$

Refraction by a Small-angled Prism for Small angle of Incidence:

$$\mu = \frac{\sin i}{\sin r_1} \quad \text{and} \quad \mu = \frac{\sin e}{\sin r_2}$$

If i is assumed to be small, then r_1 , r_2 and e will also be very small. So, replacing sines of the angles by angles themselves, we get

$$\mu = \frac{i}{r_1} \quad \text{and} \quad \mu = \frac{e}{r_2}$$

$$i + e = \mu (r_1 + r_2) = \mu A$$

$$\text{But } i + e = A + \delta$$

$$\text{So, } A + \delta = \mu A$$

or

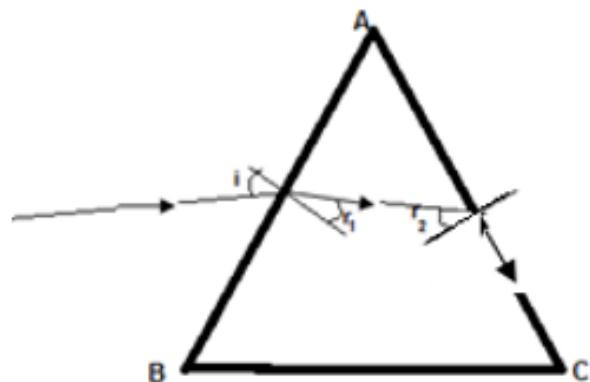
$$\delta = A (\mu - 1)$$

Numerical : At what angle should a ray of light be incident on the face of a prism of refracting angle 75^0 and refractive index $\sqrt{2}$ so that it just suffers total internal reflection at the other face ?

Numerical : At what angle should a ray of light be incident on the face of a prism of refracting angle 75^0 and refractive index $\sqrt{2}$ so that it just suffers total internal reflection at the other face ?

Solution : At second face ray suffers just internal reflection means $r_2 = i_c$.

$$\text{As } i_c = \sin^{-1} \frac{1}{\mu} = \sin^{-1} \frac{1}{\sqrt{2}} = 45^0 \Rightarrow r_2 = 45^0$$


$$\text{Since } A = r_1 + r_2 \Rightarrow r_1 = A - r_2 = 75^0 - 45^0 = 30^0$$

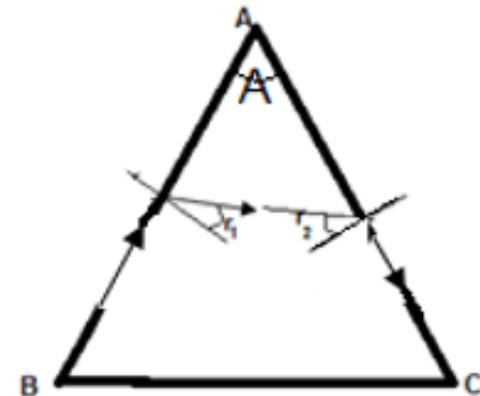
Again by Snell's law at face AB ;

$$\frac{\sin i}{\sin r_1} = \mu \Rightarrow \sin i = \mu \sin r_1 = \sqrt{2} \sin 30^0$$

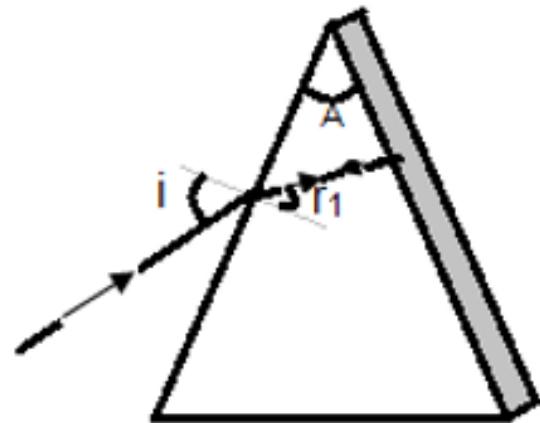
$$\Rightarrow \sin i = \sqrt{2} \times \frac{1}{2} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow i = \sin^{-1} \frac{1}{\sqrt{2}} = 45^0$$

Numerical : A ray grazing along 1st face of a prism of refracting angle A enters into prism and also grazes along the other face also ? Obtain an expression for its refractive index .


Numerical : A ray grazing along 1st face of a prism of refracting angle A enters into prism and also grazes along the other face also ? Obtain an expression for its refractive index .

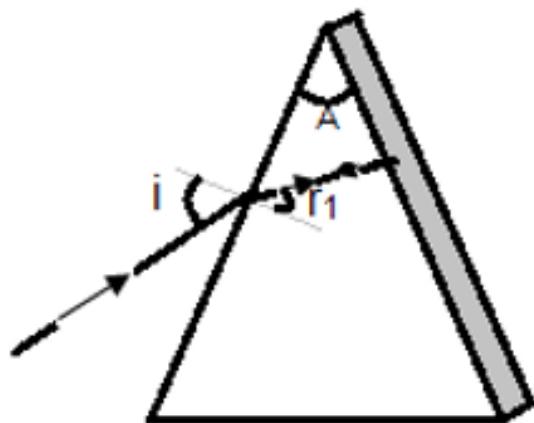
Solution : In this case $i = e = 90^0$. $\Rightarrow r_1 = r_2$


$$\text{As } A = r_1 + r_2 \Rightarrow A = 2r_1 \Rightarrow r_1 = \frac{A}{2}$$

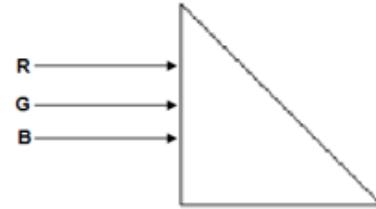
Again by Snell's law in 1st face , $\sin i = \mu \sin r_1$

$$\Rightarrow \sin 90^0 = \mu \sin(A/2) \Rightarrow \mu = \frac{1}{\sin(A/2)} = \text{cosec}(A/2)$$

Numerical : One face of a prism with refracting angle 30^0 is coated with silver. A ray incident on the other face at an angle of 45^0 is refracted and reflected from the silver coated face and retraces its path. Find the refractive index of the material of the prism.


Numerical : One face of a prism with refracting angle 30^0 is coated with silver. A ray incident on the other face at an angle of 45^0 is refracted and reflected from the silver coated face and retraces its path. Find the refractive index of the material of the prism.

Solution : As the ray retraces its path, hence it is striking the silvered surface perpendicularly.


$$\Rightarrow r_2 = 0^0$$

$$\text{As } A = r_1 + r_2 \Rightarrow r_1 = A - r_2 = A = 30^0$$

Using Snell's law for refraction at 1st face we have; $\mu = \frac{\sin i}{\sin r_1} = \frac{\sin 45^0}{\sin 30^0} = \frac{1/\sqrt{2}}{1/2} = \sqrt{2}$

Numerical : A beam of light consisting rays of red (R) , green (G) and blue (B) enter perpendicularly at one face of a right angled isosceles triangle in to its material . The material has refractive indices 1.39 , 1.44 and 1.47 for red , green and blue colours respectively . Trace their paths by showing proper reason . What would happen if the prism were an equillateral prism in place of right angled isosceles prism ?

**THANKING YOU
ODM EDUCATIONAL GROUP**