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Chapter- 1
Relations And Functions
[bookmark: _GoBack]Types of Relation
Introduction:-


Relation from a set A to B:- Let A and B be two non-empty sets. Then a set R is said to be a relation from set A to set B if R is a subset of . i.e if .
Example:-


Let  define 
Show that R is a relation from A to B. Also find no of possible relations from A to B.


Relation on a set A:- Let A be any non-empty set. Then a set R is said to be a relation on A if R is a subset of . i.e .
Example:-


Let  and define. Show that R is a relation on A. What is the possible number of relations on A.
Types of Relation:-

(1) Empty or void relation:- A relation R on the set A is called empty relation if no elements of A are related to any elements of A i.e .
Example:-


Let , define . Show that R is an empty relation on set A.

(2) Universal Relation:- A relation R on a set A is called universal relation if each element of A is related to every element of A. i.e if .
Example:-


Let  and define . Show that r is a universal relation on set A.
Note:- Void and universal relations are called trivial relations.


(3) Identity Relation:- A relation R on set A is called identity relation if every element of A is related to itself only. i.e if . The identity relation on set A is denoted by .
Example:-




Let A ={1, 2, 3}, and the relation R defined by . Show that R is an identity relation.

 (4) Reflexive Relation:- A relation R on the set A is called reflexive relation if a R a for every . i.e if  for every .
Example:-
Let A = {1, 2, 3}. Define the relation R1, R2, R3 on A as.


(i) 		(ii) 

(iii) 
Check whether R1, R2, and R3 are reflexive or not.
Example:-
The relation “equal to” in the set of Natural numbers is reflexive.
	Note:- Identity and universal relations are reflexive, but empty relation is not reflexive. All reflexive relations are not an identity relation.


(5) Symmetric Relation:- A relation R on the set a is called symmetric relation if aRb implies b R a, for every , .
Example:-
Let A = {1, 2, 3} define the relation R1, R2 and R3 on A as.


(i) 			(ii)  

(iii) 
Check whether R1, R2, and R3 are symmetric or not.
Example:-
The relation parallel to in the set of the lines in a plane is symmetric.
Note:- 
· Identity and universal relation are symmetric
· 
Empty relation is also symmetric as there is no situation in which .



(6) Transitive Relation:- A relation R on the set A is called transitive relation if aRb and b R c imply a R c, for every . i.e if  for every .
Example:-

Let , define R1, R2, R3, R4 on A as 


(i) 				(ii) 


(iii) 				(iv) 
Check R1, R2, R3, and R4 are transitive or not.
Example:-
The relation greater than on R is transitive.

Note:- If there is no situation in which , then the relation is transitive

Equivalence Relation and Equivalence Class
Equivalence Relation:- A relation R on a set A is called equivalence relation if R is reflexive, symmetric, and transitive.

Equivalence Class: - Let R be an equivalence relation on set A and let . Then we define the equivalence class of ‘a’ as



     
Example:-

. Define the relations R1, R2, R3, and R4 on A as.


(i) 		(ii) 

(iii) 

(iv) 
Check whether R1, R2, R3, and R4 are equivalence relations or not, if yes, then find the equivalence classes of all elements of set A.
Example:-

Prove that the relation R on Z, defined by  is divisible by 5 is an equivalence relation on Z.

Example:-

Show that the relation R on IR defined as  is neither reflexive not symmetric nor transitive.
Example:-




Show that the relation R defined by in  where  is an equivalence relation. Hence write the equivalence class .
Example:-

Write the smallest and largest equivalence relation on the set 
Example:-

For the set , define a relation R on the set A as follows.

 write the ordered pair to be added to R to make it the smallest equivalence relation.
Types of Function

Function from set A to set B:- Let A and B be two non-empty sets, then a function f from set A to set B is a rule (or map or correspondence) which associates each element of set A to exactly one element of set B. If f is a function from set A to set B, then we denote it by .
Example:-
Check whether the maps in the following diagram are functions or not.
[image: ][image: ][image: ][image: ]
(i) (ii) (iii) (iv)   	
 

Domain, Co-domain, and Range of a function:-

Let  be function, then
(i) The set A is called the domain of function ‘f’
(ii) The set B is called co-domain of ‘f’
(iii) The set of all images of elements of set A under f is called range under f.
Note:-
(1)  The range of A under f is denoted by f(A).

(2)  If  then, b is called an image of a under f, and a is called pre-image of b.
(3)  The range is always a subset of the co-domain.


(4)  If , then the number of functions from A to B is 
Types of Functions:-



(1) One-one function or Injective function:- A function  is said to be one-one if no two elements of A have the same image. i.e if  for all  


Or  for all .
Note:-

(i) If a function  is not one-one then it is called many-one function


(ii) if a function    is one-one then 

(iii) If , then no of one-one function from A to B

    = 
Example:-
Check whether the function in the diagram are one-one or not.
[image: ][image: ][image: ]
(i)	(ii) 	(iii) 





On to function or subjective function:-




A function  is said to be onto if, for each , there exists  such that , we say that ‘a’ is pre-image of ‘b’. In other words, f is onto if Range of f = co-domain of f, i.e if every element in B has a pre-image in A.
Note:-

(i) If a function  is not onto then it is called into function.


(ii) If a function   is onto then 

(iii) Let A be any finite set  then no of onto function from A to A is p!
Example:-
[image: ][image: ][image: ]
(i) 	(ii)	(iii) 




Check whether functions in the figure are onto?
Bijective Function:-

A function  is said to be bijective if it is both one-one and onto.
Examples:-




Let  and  let  be defined by . Show that f is one-one and onto (bijective). 
Composition of Function:-


The composition of two functions is a chain process in which the output of the first function becomes the input of the 2nd function. Let  and  be two functions.




Exactly one element for every , there is exactly one element . For , there is exactly one element . This result is a new function from A to C as shown in the figure.
[image: ]
Definition:-




Let  and  be any two functions. Then the composition of f and g is a function  defined as .
Examples – 01



If  are given by . Find gof and fog show that .
Examples-02


Let  and  be functions defined by 




Then find gof. Whether fog is defined or not.

Notes:-
· 
The composition gof exists if the range of domain of g.
· 
The composition fog exists if the range of  domain of f.
· It may be possible gof exists but fog does not exist
· gof and fog may or may not be equal.
Properties of the composition of Functions:-


(1) Composition of functions is associative Let  then 


(2) Let  and  be two functions.
      (i) If both are one-one then gof is one-one
      (ii) If both are onto then gof is onto.



(3) Let  and  be two functions such that 
    (i) If gof is onto, then g is onto			    (ii) If gof is one-one then f is one-one
    (iii) If gof is onto and g is one-one then f is onto	
    (iv) If gof is one-one and f is onto then g is one-one

Problems to work out:-

(1) If the mapping f and g are given by  write fog and gof.



(2) Find gof and fog when  and  are defined by 



(3) Let  be two functions defined as  then find .





(4) Let  be signum function as  and , be the greatest integer function given by . Do fog and gof coincide in ?
Solution:-

Let  be any element 











Also  as  



 for every  ; so fog and gof does not coincide in 

The inverse of a Function:-







[image: ]Let f be a one-one and on-to function from A to B. Let y be an arbitrary element of B. Then f being onto, there exists an element . Such that , Also f being one-one this x must be unique. Thus for each , there exists a unique element such that . So we may define a function denoted by . Such that . 

The function  is called the inverse of f. 
Definition (1)



Let  be both one-one & onto function, then  is a function which associates to each y of B, a unique x of A such that  is called the inverse of function f.


Definition (2)






Another definition of the inverse function. Let  be one-one and onto function, then the function  such that  and , where  are identity functions on A and B respectively, is called the inverse of f i.e .
Notes:-
· If the inverse of a function f exists then f is called an invertible function.
· A function f is invertible if and only if f is one-one and onto.
· The two definitions of the Inverse function given above are equivalent.
· 

The domain of Range of f and range of domain of f.
· 

 domain of f i.e   is an identity function.
· 

· 
If f is one-one and onto then  is also one-one and onto.
Working Rule to find Inverse of a Function:-


Let  defined by 


Step – I:- Prove that f is one-one i.e take  and show that 


Step – II:- Prove that f is onto i.e for any , there exists 


Step – III:- Find x in terms of y from  let 
Example -1


Consider  given by . Show that f is invertible, find the inverse of f.
Example-2


Show that  given by  is not invertible.
Properties:-



(1) If   are be two invertible functions. Then gof is also invertible with .

(2) 	If   is invertible, then its inverse is unique.


(3) 	If  is invertible then 




(4) 	Let  and  be two functions such that  then f and g are bijections and .
Example-3



If  and the function . Write .

Example-4



Consider  given by . Show that .
Example – 5



If  show that  for all . What is the inverse of f?

Problem – 01



Let be defined by  for all . State whether the function is bijective justify your answer.
Problem – 02


Show that the modulus function , given by  is neither one-one nor onto.
Solution:-


For one-one   		


As  but  so f is not one-one

For onto 	Co-dom of f = R

As Range  co-dom f so f is not onto
Problem – 3


Consider , given by . 

Show that f is invertible wth 
Problem – 4
Give an example of a function
(i) Which is one-one but not onto		(ii) Which is not one-one but onto
(iii) Which is neither one-one nor onto.
Solution:-



(i) Let  and let . Since every element of A has different images is B so f is one-one. Also, the element  does not have a pre-image is A. So f is not onto



(ii)  Let  and  Since  have same image 4 is B. So g is not one-one. Also, every element of in B has a pre-image is A, so g is onto




(iii)  and . Since elements  have the same image 4 in B. So h is not one-one. Also, the element  does not have a pre-image in A so h is not onto.
Problem – 5

Show that a one-one function  must be onto.


Solution:- Give that  is a one-one function. Where . 

Since  is one-one


………………………………….(1)

Suppose that  is not onto 

……………………………………(2)


So from (1) and (2), we get  which is a contradiction, as . 
Hence f is onto 
Problem – 6

Show that an onto function  is always one-one
Solution:-

Given that  is onto,

Where 

Since  is onto

……………………………..(1)

Suppose that  is not one-one

……………………………….(2)


From (1) and (2) we get  which is a contradiction as  
Hence f is one-one.



 Problem -7:-
(a) Write total number of functions from {1, 2} to {x, y, z}


Answer:-  as no of functions from A to B is 
(b) Write total number of one-one functions from {1, 2} to {x, y, z}

Answer:- 
(c) Find the total number of onto functions from set {x, y, z} to {1, 5, 25, 125}.
Answer:- 0 As n(A) < n(B) so no of onto function is 0

(d) Find the total number of bijective functions from set {x, y, z} to 
Answer:- 3! As n(A) = n(B) = n, no of bijectiions
(e) if f(x) = |x| and g(x) = [x] find (fog) (-1.5) and (gof) (-1.5)
Answer:- 2 ; 1
Problem - 8:-





If the function  be defined by  by . Then find fog and show that fog is invertible. Also find , Hence find .
Solution:-



Here  defined by . Now to prove fog is invertible. One-one:- Let 






So fog is one-one Onto:- let  be any element then 





……………………… (1)


For every,  we have  so fog is onto.


Thus, fog is an invertible function so  exists and from (1) 
Problem - 9:-



If the function  is I veritable, then find . Hence prove that .
Solution:-


Given  defined by 


One-one: Let and 






So f is one-one


Onto:- Let  be any element then 





…………………………..(1)


So f is onto. Thus f is on invertible function so  exists and from (1) we have 

The inverse of f is given by 

Now 



Problem - 10:-





Consider  and  defined as  for all . Show that 
Solution:- 



Given , defined by  defined by 


Now  such that 










Also  such that 







Hence, 
Example:-11




Let  be the signum function defined as  and  be the greatest integer function given by . Do fog and gof coincide in (0, 1]?
Solution:-




Given   and  defined by 

Let  be any element

Then 





Also 





, for every  Hence, fog and gof do not coincide in 

Example:-12





Let . Let the functions  be defined by  and . Show that .
Solution:-

Given 

Also, given that 

Since, 



Therefore,  for some . Hence, 
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