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Chapter- 3
Matrices
Concept, notation, order, equality, types of matrices

A matrix is a rectangular arrangement of numbers or functions arranged into a fixed number of rows and columns. The element of a matrix is always enclosed in the bracket [ ] or (). Matrices are represented by capital letters like A, B, C, etc.
A matrix having m rows and n columns is called a matrix order m x n (read as m by n matrix). In general, a matrix of order m x n is written as.




It can also be written in compact form as   represent an element of ith row and jth column.
Question – 1
Write all possible order of matrices having 24 elements

Solution:- 
Question – 2


Write a matrix of order  where 

Solution:- 
Types of Matrices:-
Row Matrix:- A matrix is said to be a row matrix if it has only one row.

Example:- 
Column Matrix:- a matrix having any number of rows but only one column is called a column matrix.

Example:- 
Rectangular Matrix:- 

A matrix having m rows and n columns where  is called a rectangular matrix.


Square matrix:-

It a matrix in which number of rows = number of columns 
Diagonal Elements:-

The diagonal elements of a square matrix are the elements for which i = j. i.e the elements. The line along which the diagonal elements lie is called the leading diagonal or principal diagonal.
Diagonal Matrix:-
It is a square matrix where diagonal elements are non-zero but the other elements are zero.

Example:- 

Scalar matrix:- It is a diagonal matrix where all the diagonal elements are equal

Example:- 
Equality of Matrices
Two matrices are said to be equal if their order is the same and their corresponding elements are equal.


If  then 
Question:- 

If  then find x, y, z and w
Solution:-



Solving 




Addition, multiplication and scalar multiplication.

Addition of Matrices:-
Matrix addition is defined only when they are of the same order. The sum of matrices A and B is a matrix whose elements are obtained by adding the corresponding elements of A and B.
Example:-

Let 


Multiplication of a matrix by a scalar:-
If a scalar K is multiplied by a matrix A then all elements of matrix A are multiplied by constant K.
Example:-

If  find 5A
Solution:-


Example:-


If  find 
Solution:-


Simple properties of addition, multiplication, and scalar multiplication

Properties:-
Closure Law:- A matrix added with a matrix always gives a matrix. So Closure Law satisfies.

Commutative Law:- 

Associative Law:- 
Existence of Additive Identity:-

A null matrix of the same order with the given matrix is the additive identity of the matrix. 
Example:-


The additive identity of  is 
Existence of additive inverse:-
A is the additive inverse of A
Question – 1

Find x and y if 

Solution:- 

Question – 2


If  then find the matrix X, such that 
Solution:-


Question – 3


Find the value of  from matrix equation 
Solution:-


Multiplication of Matrices




If A and B be any two matrices, then their product AB will be defined only when the number of columns is A is equal to the number of rows in B. if  then their product, will be a matrix of order, where, 
Example:-

If 

Then  


Properties of Matrix Multiplication:-
If A, B, and C are three matrices such that their product is defined, then
· 
(Generally not commutative)
· 
 (Associative Law)
· 
 (I is identity matrix for matrix multiplication)
· 
 (Distributive Law)
· 
If  this not implies that B = C (Cancellation Law is not applicable)
· 
If  It does not mean that A = 0 or B = 0 again product of two non-zero matrices may be zero matrix. 
Note:-
· The multiplication of two diagonal matrices is again a diagonal matrix.
· The multiplication of two triangular matrices is again a triangular matrix
· The multiplication of two scalar matrices is also a scalar matrix.
· If A and B are two matrices of the same order, then
· 

· 

· 

· 

· 




Positive Integral Powers of the matrix:-
The positive integral powers of matrix A are defined only when A is a square matrix. Also then


Also for any positive integers m, n



(a) 	(b) 	(c) 

(d)  where A is a square matrix of order n.
Example – 1


If  and , then find the value of n.
Solution:-












Example – 2


If  then find the element 
Solution:-

The element  is the product of the second row of A to the first column of A


Transpose of a Matrix:-



The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called transpose of matrix A and is dented by  or . From the definition, it is obvious that if the order of A is .

Example:- Transpose of Matrix 
Properties of Transpose:-



(a) 		(b) 	(c) 
Non-commutative of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix
Non-Commutative of multiplication of matrices:-


Example:- If  find AB, BA, show that 


Solution:- , 

Clearly . So it is not commutative.
Zero Matrix as a product of two non zero matrices.

Example:- 
If the product of two matrices is a zero matrix, one of the matrices doesn't need to be a zero matrix.
Application of Matrices:-
Example – 1
Use matrix multiplication to divide Rs. 30, 000 in two parts such that the total annual interest at 9% on the 1st part and 11% on the second part amount Rs. 3060/-

Solution:- 

   AR = 3060




Two parts are 1200, 1800


Example – 2  Let  be the  identity matrix of order 2.Show that 


Solution:-
We have,

 

And 






 where 






Example – 3


If , prove that 
Where I is a unit matrix of order 2 and n is a positive integer.
Solution:-
We shall prove the result by mathematical induction on n.
Step – 1, When n = 1, by the definition of integral powers of a matrix, we have


So, the result is true for n = 1
Step – 2, Let the result be true for n = m. Then


. Now we shall show that the result is true for 

i.e 
By the definition of integral powers of a matrix, we have










		




	




This shows that the result is true for , whenever it is true for . Hence, by the principle of mathematical induction, the result is valid for any positive integer n.


Example – 4 If A is a square matrix such that  show that 
Solution:- Using matrix multiplication, we obtain

























.


Symmetric and Skew symmetric matrices.




Symmetric Matrix:- A square matrix  is called symmetric matrix if  for all I, j, or .

Example:- 
Note:-
· Every unit matrix and square zero matrix are symmetric matrices.
· 
Maximum number of different elements in a symmetric matrix is 



Skew-Symmetric Matrix:- A square matrix  is called the skew-symmetric matrix. If  for all, I, j or 

Example:- 
Note:-
· 
All principal diagonal elements of the skew-symmetric matrix are always zero because for any diagonal element 
· The diagonal elements of a skew-symmetric matrix are always 0.
Proof:
[image: ] [image: ]

Example:-
1. 
If the matrix  is skew-symmetric. Find the value of a, b, c
Answer:
[image: ] [image: ]


2.	Let A be a square matrix then prove that
· 
 is a symmetric matrix
Prove: 
[image: ] [image: ]
· 
 is a skew-symmetric matrix
Prove:
[image: ][image: ]
· 

 and  are symmetric matrices
Prove:
[image: ]
2. If A and B are symmetric matrices then show that AB is symmetric iff AB = BA
Prove:
[image: ][image: ]


4.	Let A and B are symmetric matrices of same order then show that
· 
 is a symmetric matrices
Prove:
[image: ]
· 
 is a skew-symmetric matrix
Prove:
[image: ]
[image: ]
· 
 is a symmetric matrix
Prove:
[image: ]

Theorem – 1
Every square matrix can be uniquely expressed as the sum of a symmetric and skew-symmetric matrix.
Proof

Let A be a square matrix then 

Now 

, so T is a symmetric matrix.



				

				

				
So Q is a skew-symmetric matrix.
Question:-

Express the matrix A = as the sum of a symmetric and skew-symmetric matrix.
Answer:
[image: ] 
[image: ] 
[image: ] 
[image: ]
Concept of elementary row and column operations.

Elementary Transformations or elementary operations of a matrix:-
The following three operations applied on the rows (columns) of a matrix are called elementary row (column) transformation.
· 

Interchange of any two rows (columns) denoted by  or 
· 

Multiplying all elements of a row (column) of a matrix by a non-zero scalar denoted by  or 
· 
Adding to the elements of a row (column), the corresponding elements of any other row (column) multiplied by any scalar K, dented by 
Method of finding the inverse of a matrix by Elementary transformation:-


Let A be a non-singular matrix of order n. Then A can be reduced to the identity matrix  by a finite sequence of elementary transformation only. As we have discussed every elementary row transformation of a matrix is equivalent to pre-multiplication by the corresponding elementary matrix. Therefore there exist elementary matrices E1, E2 …..E4 such that 


 (post multiplying by )


	


Algorithm for finding the inverse of a non-singular matrix by elementary row transformations:-
Let A be a non-singular matrix of order n

Step – I:- Write 


Step – II:- Perform a sequence of elementary row operations successively on the LHS and the prefactor  on the RHS till we obtain the result 

Step – III:- Write . 
The following steps will be helpful to find the inverse of a square matrix of order 3 by using elementary row transformations.
Step – I:-  Introduce unity at the intersection of the first row and first column either by interchanging two rows or by adding a constant multiple of elements of some other row to the first row.
Step – II:- After introducing unity at (1, 1) place introduce zeros at all other places in the first column.
Step – III:- Introduce unity at the intersection 2nd row and 2nd column with the help of the 2nd and 3rd row.
Step – IV:- Introduce zeros at all other places in the second column except at the intersection of 2nd and 2nd column.
Step – V:- Introduce unity at the intersection of 3rd row and third column.
Step – VI:- Finally introduce zeros at all other places in the third column except at the intersection of the third row and third column.
Example:- 1

Find the inverse of the matrix  using elementary row transformation.
Solution:-






		by 


		by 


Problem 
Using elementary transformation find the inverse of following matrices.
[image: ]

Answer:
[image: ] [image: ] [image: ]
Homework:-
Using elementary transformation find the inverse of following matrices.



(a) 	     	(b) 	    	(c) 
Invertible matrices and proof of the uniqueness of inverse if it exists

The uniqueness of Inverse:-
The inverse of a square matrix, if it exists, is unique

Let  be any square matrix
If possible, A has two inverses B and C

………………………(1)

& ………………………..(2)

Now, 
Example – 1


Solution:-

Let 




				


			


			


			by 


Problem – 1

Find the inverse of the matrix  by using elementary row transformation.

Answer:
[image: ][image: ]
Problem – 2


 find  using elementary row transformation.
Answer:
[image: ]
 [image: ][image: ]
Home Work:-

Find  , of the following matrices using elementary row transformation.


(a) 						Answer:- 


(b) 							Answer :- 


(c) 							Answer:- 


Word problems on matrices

[image: ] [image: ] [image: ]
[image: ]
[image: ] [image: ] [image: ] [image: ]
[image: ] [image: ] [image: ] [image: ]
[image: ] [image: ]
[image: ] [image: ] 
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