

Chapter- 1

Relations and Functions

Introduction:-

Relation from a set A to B:-

Let A and B be two non-empty sets. Then a set R is said to be a relation from set A to set B if R is a subset of $A \times B$. i.e., if $R \subseteq A \times B$.

Example:-

Let $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$. Define $R = \{(a, b) : 2a = b, a \in A, b \in B\}$

Show that R is a relation from A to B. Also, find the number of possible relations from A to B.

Solution: We have,

$$A \times B = \{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 1), (3, 3), (3, 4)\}$$

Here, $R = \{(1, 2), (2, 4)\}$.

Since, $R \subseteq A \times B$, so R is a relation from A to B .

The number of possible relations from A to B is $2^9 = 512$.

Relation on a set A:- Let A be any non-empty set. Then a set R is said to be a relation on A if R is a subset of $A \times A$. i.e., if $R \subseteq A \times A$.

Example:-

Let $A = \{1, 2, 3\}$ and define $R = \{(a, b) : 2a = b : a, b \in A\}$. Show that R is a relation on A . What is the possible number of relations on A .

Solution: We have

$$A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}.$$

Here, $R = \{(1, 2)\}$. So, R is a relation on A .

The number of relations on $A = 2^{3^2} = 512$.

Types of Relations:-

1. **Empty or Void Relation:-** A relation R on the set A is called empty relation if no elements of A are related to any elements of A, i.e., if $R = \emptyset$.

Example:-

Let $A = \{1, 2, 3\}$ and define $R = \{(a, b) : a - b = 12\}$. Show that R is an empty relation on set A.

Solution: We have

$$A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}.$$

Since $R = \{(a, b) : a - b = 12\}$, so $\emptyset \subseteq A \times A$.

Hence, R is an empty relation on set A.

2. **Universal Relation:-** A relation R on a set A is called universal relation if each element of A is related to every element of A. i.e. if $R = A \times A$.

Example:-

Let $A = \{1, 2\}$ and define $R = \{(a, b) : a + b > 0\}$. Show that R is a universal relation on set A.

Solution: We have, $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

Since $R = \{(a, b) : a + b > 0\}$, so $R = \{(1, 1), (1, 2), (2, 1), (2, 2)\} = A \times A$.

Hence, R is a universal relation on set A .

Remark:- Void and universal relations are called trivial relations.

3. Identity Relation:- A relation R on set A is called an identity relation if every element of A is related to itself only. i.e., if $R = \{(a, a) : a \in A\}$. The identity relation on set A is denoted by I_A .

Example:-

Let $A = \{1, 2, 3\}$, and the relation R defined by $R = \{(a, b) : a - b = 0; a, b \in A\}$. Show that R is an identity relation.

Solution: We have

$$A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}.$$

Since $R = \{(a, b) : a - b = 0; a, b \in A\}$, so $R = \{(1, 1), (2, 2), (3, 3)\} \subseteq A \times A$.

Hence, R is an identity relation on A .

4. Reflexive Relation:- A relation R on the set A is called reflexive relation if $a R a$ for every $a \in A$. i.e., if $(a, a) \in R$ for every $a \in A$.

Example:-

Let $A = \{1, 2, 3\}$. Define the relation R_1, R_2 on A as

$$(i) R_1 = \{(1,1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\} \quad (ii) R_2 = \{(1, 2), (1, 3), (2, 3)\}$$

Check whether R_1 and R_2 are reflexive or not.

Solution: (i) Since, $(a, a) \in R_1$, for every $a \in A$, so R_1 is a relation on set A.

(ii) Since, $(1, 1) \notin R_2$, so R_2 is not a reflexive relation on set A.

Remarks:-

- Identity and universal relations are reflexive, but empty relation is not reflexive.
- All reflexive relations are not identity relations.

5. Symmetric Relation:- A relation R on the set a is called symmetric relation if $a R b$ implies $b R a$, for every $a, b \in A$.

Example:-

Let $A = \{1, 2, 3\}$ define the relation R_1 and R_2 on A as

$$(i) R_1 = \{(1, 1), (2, 2), (1, 2), (2, 1)\} \quad (ii) R_2 = \{(1, 1), (2, 2), (1, 2), (2, 1), (3, 1)\}$$

Check whether R_1, R_2 , are symmetric or not.

Solution: (i) Here $R_1 = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$

Since, $(a, b) \in R_1 \Rightarrow (b, a) \in R_1$, for every $a, b \in A$.

Hence, R_1 is a symmetric relation on set A .

(ii) Since, $(3, 1) \in R_2$, but $(1, 3) \notin R_2$.

Hence, R_2 is not a symmetric relation on set A .

Remarks:-

- Identity and universal relation are symmetric

- Empty relation is also symmetric, as there is no situation in which $(a, b) \in R$.

6. Transitive Relation:- A relation R on the set A is called transitive relation if $a R b$ and $b R c$ implies $a R c$, for every $a, b, c \in A$, i.e., if $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for every $a, b, c \in A$.

Example:-

Let $A = \{1, 2, 3\}$. Define R_1, R_2 on A as

$$(i) R_1 = \{(1, 1), (1, 2), (2, 3)\} \quad (ii) R_2 = \{(1, 2), (1, 3)\}$$

Check R_1 and R_2 are transitive or not.

Solution: (i) Since, $(1, 2) \in R_1$ and $(2, 3) \in R_1$ but $(1, 3) \notin R_1$, so R_1 is not a transitive relation on set A .

(ii) Since there is no situation in which $(a, b) \in R_2$ and $(b, c) \in R_2$, so R_2 is a transitive relation on set A .

Remarks:-

- Identity and universal relations are transitive.
- If there is no situation in which $(a, b) \in R$ and $(b, c) \in R$, then the relation is transitive.

7. Equivalence Relation:- A relation R on a set A is called an equivalence relation if R is reflexive, symmetric, and transitive.

Equivalence Class: - Let R be an equivalence relation on set A and let $a \in A$. Then we define the equivalence class of 'a' as

$$[a] = \{ b \in A : b \text{ is related to } a \} = \{b \in A : (b, a) \in R\}$$

Example:-

Let $A = \{1, 2, 3\}$. Define the relations R_1 on A as $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

Check whether R_1 is an equivalence relation or not. If yes, then find the equivalence classes of all the elements of set A .

Solution: Since $(3, 3) \notin R_1$, so R_1 is not reflexive.

Hence, R_1 is not an equivalence relation.

Example:-

Prove that the relation R on Z , defined by $(a, b) \in R \Leftrightarrow a - b$ is divisible by n , $n \in Z$ is an equivalence relation on Z .

Solution:

Reflexive: For $a \in Z$, we have $a - a = 0 = 0 \times n$.

So, $(a, a) \in R$. Hence, R is reflexive.

Symmetric: Let $(a, b) \in R$, where $a, b \in Z$

$$\Rightarrow a - b = n \times k, \text{ where } k \in Z$$

$$\Rightarrow b - a = -n \times k = n(-k)$$

So, $(b, a) \in R$. Hence, R is symmetric.

Transitive: Let $(a, b) \in R$ and $(b, c) \in R$, where $a, b, c \in Z$.

$\Rightarrow a - b = n \times k$ and $b - c = n \times m$, where $k, m \in Z$

Adding, $a - c = n (k + m)$

So, $(a, c) \in R$, Hence, R is transitive.

Therefore, R is an equivalence relation.

Example:-

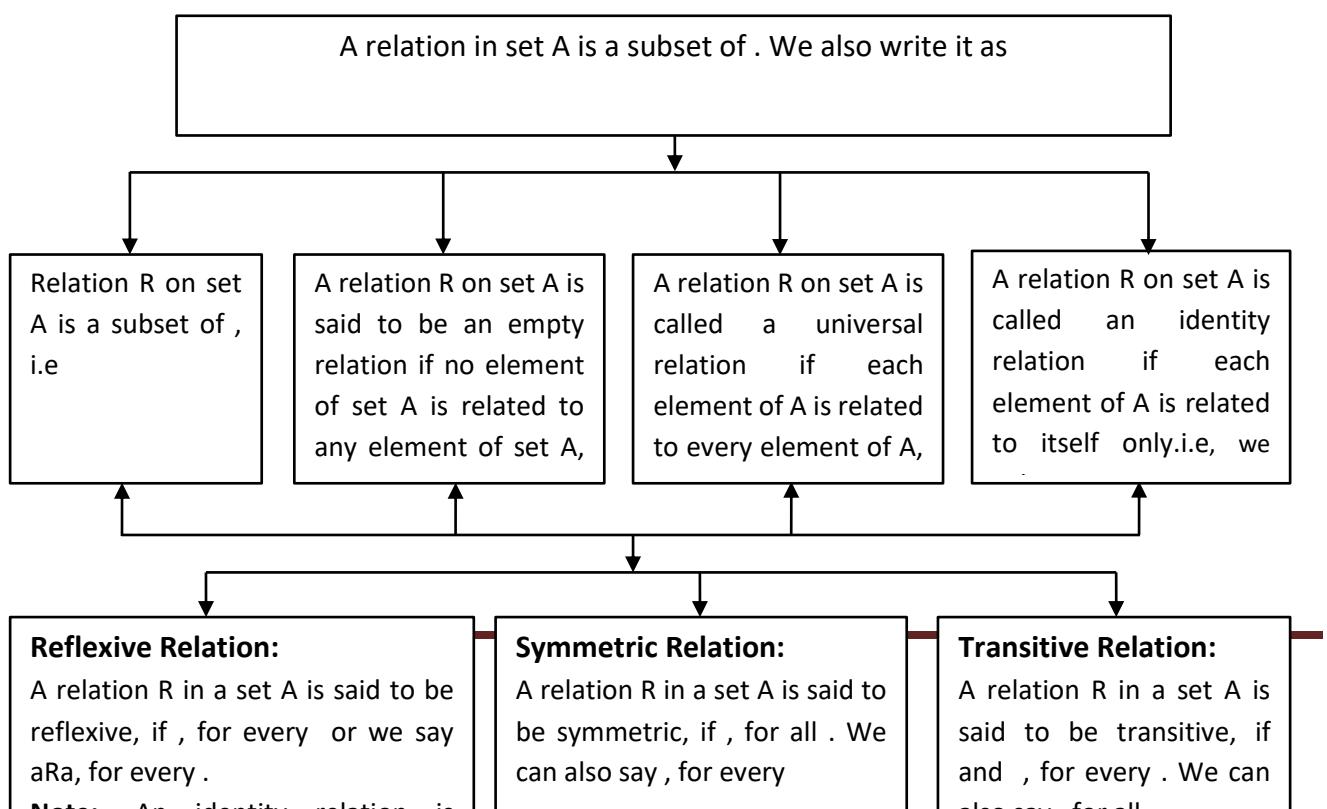
Write the smallest and largest equivalence relation on the set $A = \{1, 2, 3\}$.

Solution: The smallest equivalence relation on the set A is $I_A = \{(1, 1), (2, 2), (3, 3)\}$.

The largest equivalence relation on set A is

$$A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

MEMORY MAPS



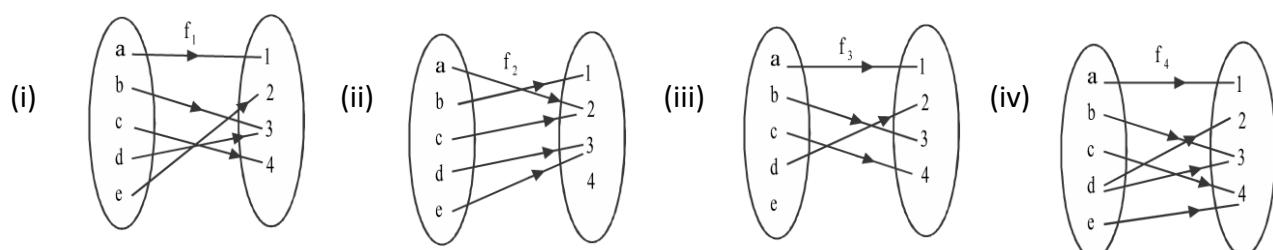
Functions

Introduction:

Function from set A to set B:- Let A and B be two non-empty sets, then a function f from set A to set B is a rule (or map or correspondence) that associates each element of set A to exactly one element of set B. If f is a function from set A to set B, then we denote it by $f : A \rightarrow B$.

Example:-

Check whether the maps in the following diagram are functions or not.



Solution: (i) Every element in A has exactly one image in B. So, f_1 is a function.

(ii) Every element in A has exactly one image in B . So, f_2 is a function.

(iii) Element e in A does not have an image in B . So, f_3 is not a function.

(iv) Element d in A does not have exactly one image in B . So, f_4 is not a function.

Domain, Co-domain, and Range of a function:-

Let $f : A \rightarrow B$ be function, then

(i) set A is called the domain of function f .

(ii) the set B is called the Co-domain of f .

(iii) the set of all images of elements of set A under f is called range or image set of A under f .

Remarks:-

- The range of A under f is denoted by $f(A)$.
- If $f(a) = b$ then, b is called an image of a under f , and a is called the pre-image of b .
- The range is always a subset of the co-domain.

- If $n(A) = p, n(B) = q$, then the number of functions from A to B is $(q)^p$

Types of Functions:-

1. One-one function or Injective function:- A function $f : A \rightarrow B$ is said to be one-one if no two elements of A have the same image, i.e., if $a \neq b \Rightarrow f(a) \neq f(b)$ for all $a, b \in A$

or $f(a) = f(b) \Rightarrow a = b$ for all $a, b \in A$.

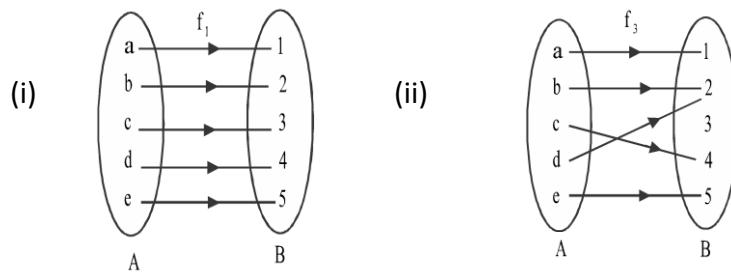
Remarks:-

- If a function $f : A \rightarrow B$ is not one-one then it is called the many-one function.
- If a function $f : A \rightarrow B$ is one-one then $n(A) \leq n(B)$
- If $n(A) = p, n(B) = q$, then no of one-one function from A to B

$$= \begin{cases} 0, & \text{if } p > q \\ {}^q P_p = \frac{q!}{(q-p)!}, & \text{if } p \leq q \end{cases}$$

Example:-

Check whether the function in the diagrams is one-one or not.



Solution: (i) Every element in A has a different image in B. So, f_1 is a one-one function.

(ii) Elements b and d in A have the same image 2 in B. So, f_3 is not a one-one function.

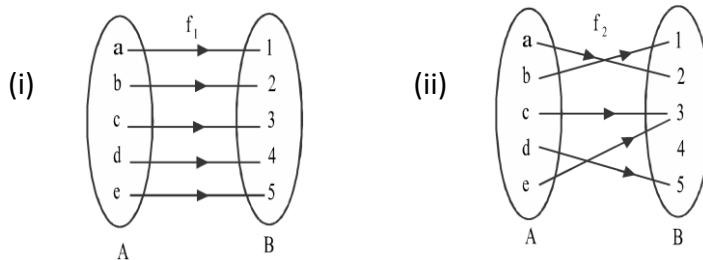
2. Onto function or Surjective function:-

A function $f : A \rightarrow B$ is said to be onto if, for each $b \in B$, there exists $a \in A$ such that $f(a) = b$, we say that a is pre-image of b . In other words, f is onto if Range of $f =$ Co-domain of f , i.e., if every element in B has a preimage in A .

Remarks:-

- If a function $f : A \rightarrow B$ is not onto then it is called into function.
- If a function $f : A \rightarrow B$ is onto then $n(A) \geq n(B)$
- Let A be any finite set such that $n(A) = p$ then, the number of onto functions from A to A is $p!$.

Example:- Check whether functions in the following diagram are onto:



Solution: (i) Since, every element in B has a preimage in A , so, f_1 is onto function.

(ii) Since, $4 \in B$ does not have a pre-image in A , so, f_2 is not onto function.

3. Bijective Function:-

A function $f : A \rightarrow B$ is said to be bijective if it is both one-one and onto.

Remarks:

- If $f : A \rightarrow B$ is a bijection, then $n(A) = n(B)$.
- Let A and B be two non-empty finite sets such that $n(A) = p$ and $n(B) = q$. Then,

Number of bijective functions from A to B =

Example:-

Classify the following function as one-one, onto, or bijection:

$f: N \rightarrow N$ defined by $f(x) = x^2 + 1$.

Solution: One – one: Let $x_1, x_2 \in N$ be any two elements.

Then, $f(x_1) = f(x_2) \Rightarrow x_1^2 + 1 = x_2^2 + 1$

$\Rightarrow x_1^2 = x_2^2 \Rightarrow x_1 = x_2$

So, f is one – one.

Onto: Let $y \in N$ be any element.

Then, $f(x) = y \Rightarrow x^2 + 1 = y$

$$\Rightarrow x = \sqrt{y - 1}$$

For $y = 1 \in N$, we have $x \notin N$.

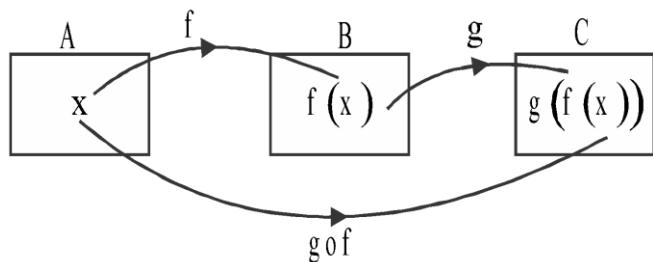
So, f is not onto.

Hence, f is not a bijection.

Composition of Functions:-

The composition of two functions is a chain process in which the output of the first function becomes the input of the 2nd function. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two functions.

For every $x \in A$, there is exactly one element $f(x) \in B$. For $f(x) \in B$, there is exactly one element $g(f(x)) \in C$. This result is a new function from A to C as shown in the figure.



Definition: Let f and g be any two functions. Then the composition of f and g is a function defined as .

Remarks:-

- The composition gof exists if the range of $f \subseteq$ domain of g .
- The composition fog exists if the range of $g \subseteq$ domain of f .
- It may be possible gof exists but fog does not exist
- gof and fog may or may not be equal.

Example: If $f : R \rightarrow R$ and $g : R \rightarrow R$ is given by

$f(x) = \cos x$ and $g(x) = 5x^2$. Find gof and fog show that $fog \neq gof$.

Solution: $gof(x) = g(f(x)) = g(\cos x) = 5 \cos^2 x$

and $fog(x) = f(g(x)) = f(5x^2) = \cos \cos(5x^2)$

Properties of the composition of Functions:-

1. Composition of functions is not necessarily commutative. Let $f: A \rightarrow B$ and $g: B \rightarrow C$, then $fog \neq gof$.
2. Composition of functions is associative. Let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$ then $(hog)of = ho(gof)$
3. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions.
 - (i) If both are one-one then gof is one-one
 - (ii) If both are onto then gof is onto.
4. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions such that $gof: A \rightarrow C$

- (i) If $g \circ f$ is onto, then g is onto.
- (ii) If $g \circ f$ is one-one then f is one-one.
- (iii) If $g \circ f$ is onto and g is one-one then f is onto.
- (iv) If $g \circ f$ is one-one and f is onto then g is one-one.

Example:

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be signum function as function given by $g(x) = [x]$. Do $f \circ g$ and $g \circ f$ coincide in $(0, 1]$?

Solution:-

Let $x \in (0, 1)$ be any element

$$fog(x) = f(g(x)) = f([x])$$

$$= f(0) \text{ as } x \in (0,1) = 0$$

$$\text{Also } (gof)(x) = g(f(x)) = g(1) = [1] = 1 \text{ as } x \in (0,1)$$

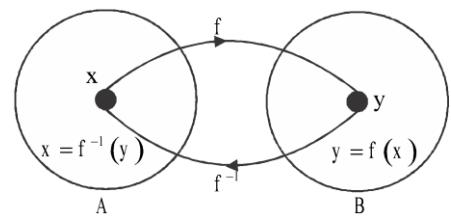
$\therefore (fog)(x) \neq (gof)(x)$ for every $x \in (0,1)$; so fog and gof do not coincide in $(0,1]$

The inverse of a Function:-

Let f be a one-one and on-to function from A to B . Let y be an arbitrary element of B . Then f being onto, there exists an element $x \in A$ such that $f(x) = y$, Also f being one-one this x must be unique.

Thus for each $y \in B$, there exists a unique element $x \in A$ such that $f(x) = y$. So we may define a function denoted by f^{-1} as $f^{-1} : B \rightarrow A$. Such that $f^{-1}(y) = x \Leftrightarrow f(x) = y$.

The function f^{-1} is called the inverse of f .



Definition (2)

Another definition of the inverse function. Let f be one-one and onto function, then the function such that and, where are identity functions on A and B respectively, is called the

Remarks:-

function, then is a function which associates to each y of B, a unique inverse of function f .

➤ If the inverse of a function f exists then f is called an invertible function.

➤ A function f is invertible if and only if f is one-one and onto.

- The two definitions of the Inverse function given above are equivalent.
- The domain of f^{-1} = Range of f and range of f^{-1} = domain of f .
- $(f^{-1} \text{ of } f)(x) = x, \forall x \in$ the domain of f i.e $f^{-1} \text{ of } f$ is an identity function.
- $(f^{-1})^{-1} = f$
- If f is one-one and onto then f^{-1} is also one-one and onto.

Working Rule to find Inverse of a Function:-

Let f defined by

Step – I:- Prove that f is one-one i.e take $x_1, x_2 \in$ domain of f and show that

Step – II:- Prove that f is onto i.e for any $y \in$ range of f , there exists

Step – III:- Find x in terms of y from let

Example -1

Consider $f : R \rightarrow R$ given by $f(x) = 4x + 3$. Show that f is invertible, find the inverse of f .

Solution: Given $f : R \rightarrow R$ defined by $f(x) = 4x + 3$.

One-one: Let $x_1, x_2 \in R$ be any two elements.

Then, $f(x_1) = f(x_2) \Rightarrow 4x_1 + 3 = 4x_2 + 3$

$$\Rightarrow x_1 = x_2$$

So, f is one – one.

Onto: Let $y \in R$ be any element.

Then, $f(x) = y \Rightarrow 4x + 3 = y$

$$\Rightarrow x = \frac{y-3}{4}$$

For every $y \in R$, we have $x \in R$. So, f is onto.

Thus, f is a bijection and hence invertible.

So, $f^{-1}: R \rightarrow R$ exists and we have $f^{-1}(y) = \frac{y-3}{4}$ [$\because f(x) = y \Leftrightarrow x = f^{-1}(y)$]

Hence, the inverse of f is given by $f^{-1}(x) = \frac{x-3}{4}$.

Properties of Invertible Functions:-

(1) If $f: X \rightarrow Y$ $g: Y \rightarrow Z$ are two invertible functions. Then gof is also invertible with $(gof)^{-1} = f^{-1} \circ g^{-1}$.

(2) If $f: X \rightarrow Y$ is invertible, then its inverse is unique.

(3) If $f: X \rightarrow Y$ is invertible then $f^{-1} \circ f = I_X$ and $f \circ f^{-1} = I_Y$

(4) Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be two functions such that $gof = I_X$ and $fog = I_Y$ then f and g are bijections and $g = f^{-1}$.

Example:

If $A = \{a, b, c, d\}$ and the function $f = \{(a, b), (b, d), (c, a), (d, c)\}$. Write f^{-1} .

Solution: $f^{-1} = \{(b, a), (d, b), (a, c), (c, d)\}$.

Example:

If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$ show that $fof(x) = x$ for all $x \neq \frac{2}{3}$. What is the inverse of f ?

Solution: Given $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$.

$$\text{Now, } fof(x) = f(f(x)) = f\left(\frac{4x+3}{6x-4}\right) = \frac{4\left(\frac{4x+3}{6x-4}\right)+3}{6\left(\frac{4x+3}{6x-4}\right)-4} = \frac{34x}{34} = x.$$

$$\Rightarrow (fof)(x) = x, \text{ for all } x \neq \frac{2}{3}.$$

$$\text{Since, } (fof)(x) = x = I(x), \text{ for all } x \neq \frac{2}{3}$$

So, $f^{-1} = f \Rightarrow f^{-1}(x) = f(x)$, for all $x \neq \frac{2}{3}$

$\Rightarrow f^{-1}(x) = \frac{4x+3}{6x-4}$, for all $x \neq \frac{2}{3}$

Hence, the inverse of f is given by $f^{-1}(x) = \frac{4x+3}{6x-4}$, for all $x \neq \frac{2}{3}$.

Example:

Show that the modulus function $f : \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x) = |x|$ is neither one-one nor onto.

Solution:-

For one-one $f(3) = |3| = 3$ $f(-3) = |-3| = 3$

As $f(3) = f(-3)$ but $3 \neq -3$ so f is not one-one

For onto Range $f = \mathbb{R}^+ \cup \{0\}$ Co-dom of $f = \mathbb{R}$

As Range $f \neq \text{co-dom } f$ so f is not onto

Example:

Give an example of a function

- (i) Which is one-one but not onto
- (ii) Which is not one-one but onto
- (iii) Which is neither one-one nor onto.

Solution:-

(i) Let $A = \{1, 2\}$, $B = \{4, 5, 6\}$ and let $f = \{(1, 4), (2, 5)\}$. Since every element of A has different images in B so f is one-one. Also, the element $6 \in B$ that does not have a pre-image is A . So f is not onto

(ii) Let $A = \{1, 2, 3\}$, $B = \{4, 5\}$ and $g = \{(2, 4), (1, 4), (3, 5)\}$. Since $1, 2 \in A$ have the same image 4 is B . So, g is not one-one. Also, every element of B has a pre-image in A , so g is onto

(iii) $A = \{1, 2, 3\}$, $B = \{4, 5\}$ and $h = \{(1, 4), (2, 4), (3, 4)\}$. Since elements $1, 2, 3 \in A$ have the same image 4 in B. So h is not one-one. Also, the element $5 \in B$ does not have a pre-image in A so h is not onto.

Example:

If the function $f: R \rightarrow R$ is defined by $f(x) = 2x - 3$ and $g: R \rightarrow R$, $g(x) = x^3 + 5$. Then find fog and show that fog is invertible. Also find $(fog)^{-1}$, Hence find $(fog)^{-1}(9)$.

Solution:-

Here $f: R \rightarrow R$ defined by $fog(x) = f(g(x)) = f(x^3 + 5) = 2(x^3 + 5) - 3 = 2x^3 + 7$. Now to prove fog is invertible. One-one:- Let $x_1, x_2 \in R$ and $(fog)(x_1) = (fog)(x_2)$

$$\Rightarrow 2x_1^3 + 7 = 2x_2^3 + 7$$

$$\Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2$$

So $f \circ g$ is one-one Onto:- let $y \in R$ be any element then $f(g(x)) = y$

$$\Rightarrow 2x^3 + 7 = y$$

$$\Rightarrow 2x^3 = y - 7 \Rightarrow x^3 = \frac{y - 7}{2}$$

$$\Rightarrow x = \sqrt[3]{\frac{y-7}{2}} \dots \dots \dots (1)$$

For every, $y \in R$ we have $x \in R$ so fog is onto.

Thus, fog is an invertible function so $(fog)^{-1} : R \rightarrow R$ exists and from (1)

$$(fog)^{-1}(y) = \sqrt[3]{\frac{y-7}{2}}; (fog)^{-1}(9) = \sqrt[3]{\frac{9-7}{2}} = 1$$

Example:

If the function $f(x) = \sqrt{2x-3}$ is veritable, then find f^{-1} . Hence prove that $(f \circ f^{-1})(x) = x$.

Solution:-

Given $f: R \rightarrow R$ defined by $f(x) = \sqrt{2x-3}$

One-one: Let $x_1, x_2 \in R$ and $f(x_1) = f(x_2)$

$$\Rightarrow \sqrt{2x_1-3} = \sqrt{2x_2-3}$$

$$\Rightarrow 2x_1 - 3 = 2x_2 - 3$$

$$\Rightarrow x_1 = x_2$$

So f is one-one

Onto:- Let $y \in R$ be any element then $f(x) = y$

$$\Rightarrow \sqrt{2x-3} = y$$

$$\Rightarrow 2x - 3 = y^2$$

So f is onto. Thus f is an invertible function so $f^{-1}: R \rightarrow R$ exists and from (1) we have

$$f^{-1}(y) = \frac{y^2 + 3}{2}$$

The inverse of f is given by $f^{-1}(x) = \frac{x^2 + 3}{2}$

Now $(f \circ f^{-1})(x) = f(f^{-1}(x))$

$$= f\left(\frac{x^2 + 3}{2}\right) = \sqrt{2\left(\frac{x^2 + 3}{2}\right) - 3}$$

Example:

Consider $f: N \rightarrow N$, $g: N \rightarrow N$ and $h: N \rightarrow R$ define as $f(x) = 2x$, $g(y) = 3y + 4$ and $f(x) = \sin x$ for all $x, y, z \in N$. Show that $h \circ (g \circ f) = (h \circ f) \circ g$

Solution:-

Given $f: N \rightarrow N$, defined by $f(x) = 2x$; $g: N \rightarrow N$ defined by $g(y) = 3y + 4$ and $h: N \rightarrow R$, $h(x) = \sin x$

Now $h \circ (g \circ f): N \rightarrow R$ such that $[h \circ (g \circ f)](x) = h[g(f(x))]$

$$= h(g(f(x))) = h(g(2x)) = h[3(2x) + 4]$$

$$= h(6x + 4) = \sin(6x + 4)$$

Also $(h \circ g) \circ f: N \rightarrow R$ such that $[(h \circ g) \circ f](x) = (h \circ g)(f(x))$

$$= (h \circ g)(2x) = h(g(2x))$$

$$= h[3(2x) + 4]$$

$$= h(6x + 4) = \sin(6x + 4)$$

Hence, $[h \circ (g \circ f)](x) = [(h \circ g) \circ f](x); \forall x \in N$

MEMORY MAPS

A function is said to be one-one (or injective), if the images of distinct elements of A under the rule f are distinct in B. i.e for every $a_1, a_2 \in A$ and $a_1 \neq a_2$, $f(a_1) \neq f(a_2)$ or we can also say that

Onto (surjective) function:

A function is said to be onto (or surjective), if every element of B is the image of some element of A under the rule f , i.e for every $b \in B$, there exists an element $a \in A$ such that $f(a) = b$.

Note: A function is onto if and only if

One-one and onto (bijective) function: A function is said to be one-one and onto (or bijective) if f is both one-one and onto.

Composition of function: Let and $g : B$ (range of f) be two functions. Then the composition of functions f and g is a function from A to C and is denoted by gof . We define gof as . For working, on element x first we apply f rule and whatever result is obtained in set B , we apply g rule on it to get the required result in set C .

Invertible function: A function is said to be invertible, if there exists a function such that . The function g is called the inverse of f and is denoted by .

Note:- For a function to be invertible, it must be one-one and onto, i.e. bijective.