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Chapter- 1
Relations and Functions
Introduction:-
Relation from a set A to B:- 
Let A and B be two non-empty sets. Then a set R is said to be a relation from set A to set B if R is a subset of  A × B. i.e., if R ⊆ A × B.
Example:-
Let A = {1, 2, 3} and B = {2, 3, 4}. Define R = {(a, b) : 2a = b , a ∈ A , b ∈ A }
Show that R is a relation from A to B. Also, find the number of possible relations from A to B.
Solution: We have, 
A × B = {(1, 2) , (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 1), (3, 3), (3, 4)}
Here, R = {(1, 2) , (2, 4)}.
Since, R ⊆ A × B, so R is a relation from A to  B.
The number of possible relations from A to B  is .
Relation on a set A:- Let A be any non-empty set. Then a set R is said to be a relation on A if R is a subset of A × A . i.e., if R ⊆ A × A. 
Example:-
Let A = {1, 2, 3} and define R = {(a, b) : 2a = b : a, b ∈ A}. Show that R is a relation on A. What is the possible number of relations on A.
Solution: We have 
A × A = {(1, 1) , (1, 2), (1, 3), (2, 1), (2, 2) , (2, 3), (3, 1), (3, 2), (3, 3)}.
Here, R = {(1, 2)}. So, R  is a relation on A .
The number of relations on A .
Types of Relations:-
1. Empty or Void Relation:- A relation R on the set A is called empty relation if no elements of A are related to any elements of A, i.e., if R = ∅.
Example:-
Let A = {1, 2, 3} and define R = {(a, b) : a - b = 12 } . Show that R is an empty relation on set A.
Solution: We have 
A × A  .
Since R = {(a, b)  : a - b =12 }, so ∅ ⊆ A × A.  
Hence, R  is an empty relation on set A.
2.  Universal Relation:- A relation R on a set A is called universal relation if each element of A is related to every element of A. i.e. if R = A × A.
Example:-
Let A = {1, 2} and define R = {(a, b) : a + b > 0}. Show that R is a universal relation on set A.
Solution: We have, A × A
Since R = {(a, b) : a + b > 0}, so R A × A.
Hence, R is a universal relation on set A.

   Remark:- Void and universal relations are called trivial relations.
3. 
 Identity Relation:- A relation R on set A is called identity relation if every element of A is related to itself only. i.e., if  R = {(a, a) : a ∈ A}.The identity relation on set A is denoted by .
Example:-
Let A = {1, 2, 3}, and the relation R defined by R = {(a, b) : a - b = 0; a, b ∈ A }. Show that R is an identity relation.
Solution: We have 
A × A .
Since R = {(a, b) : a - b = 0; a, b ∈ A }, so R ⊆ A × A.
Hence, R  is an identity relation on A.
4. Reflexive Relation:- A relation R on the set A is called reflexive relation if a R a for every a ∈ A . i.e., if (a, a) ∈ R for every a ∈ A.
Example:-
Let A = {1, 2, 3}. Define the relation R1, R2 on A as
(i) R1  = {(1,1) , (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}         (ii) R2 = {(1, 2), (1, 3), (2, 3)}
Check whether R1 and R2 are reflexive or not.
Solution: (i) Since, (a, a) ∈ R1, for every a ∈ A, so R1  is a relation on set A.

 Since, R2, so R2 is not a reflexive relation on set A.
	   Remarks:- 
· Identity and universal relations are reflexive, but empty relation is not reflexive. 
· All reflexive relations are not identity relations.

5. Symmetric Relation:- A relation R on the set a is called symmetric relation if a R b implies b R a, for every a, b ∈ A.

Example:-
Let A = {1, 2, 3} define the relation R1 and R2  on A as
(i) R1 = {(1, 1), (2, 2), (1, 2), (2, 1)}                    (ii) R2 = { (1, 1), (2, 2), (1, 2), (2, 1), (3, 1)}
Check whether R1, R2,  are symmetric or not.
Solution:  Here R1 
Since, (a, b) ∈ R1 ⇒ (b, a) ∈ R1, for every a, b ∈ A.
Hence, R1 is a symmetric relation on set A.
 Since, (3, 1) ∈ R2, but (1, 3) ∉ R2.
Hence, R2  is not a symmetric relation on set .

  Remarks:- 
· Identity and universal relation are symmetric
· Empty relation is also symmetric, as there is no situation in which (a, b) ∈ R. 


6. Transitive Relation:- A relation R on the set A is called transitive relation if a R b and b R c implies  a R c, for every a, b, c ∈ A, i.e., if (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c)  ∈ R for every a, b, c ∈ A.

Example:-
Let A = {1, 2, 3}. Define  R1, R2 on A as 	 
(i) R1 = {(1, 1), (1, 2), (2, 3)}                           (ii) R2 = {(1, 2), (1, 3)}
Check R1 and R2 are transitive or not.
Solution: (i)  Since, (1, 2) ∈ R1  and (2, 3) ∈ R1 but (1, 3) R1, so R1  is not a transitive relation on set A.
 Since there is no situation in which (a, b) ∈ R2  and (b, c)∈ R2, so  R2  is a transitive relation on set A.

Remarks:-
· Identity and universal relations are transitive.
· If there is no situation in which (a, b) ∈ R and (b, c ) ∈ R, then the relation is transitive.

7. Equivalence Relation:- A relation R on a set A is called equivalence relation if R is reflexive, symmetric, and transitive.
Equivalence Class: - Let R be an equivalence relation on set A and let a ∈ A. Then we define the equivalence class of ‘a’ as
[a] = { b ∈ A : b is related to a } = {b ∈ A : (b, a) ∈ R }

Example:- 
Let A = {1, 2, 3} . Define the relations R1 on A as R1 = {(1, 1), (1, 2), (2, 1), (2, 2)}	
Check whether R1 is an equivalence relation or not. If yes, then find the equivalence classes of all the elements of set A.
Solution: Since R1, so R1  is not reflexive.
Hence, R1  is not an equivalence relation.
Example:-
Prove that the relation R on Z, defined by (a, b) ∈ R ⇔ a - b is divisible by n, n ∈ Z is an equivalence relation on Z.
Solution: 
Reflexive: For a ∈ Z , we have a - a = 0 = 0 × n.
So, (a, a) ∈ R. Hence, R is reflexive.
Symmetric: Let (a, b) ∈ R , where a, b ∈ Z 
⇒ a - b = n × k, where k ∈ Z
⇒ b - a = - n × k = n ( - k )
So, (b, a) ∈ R. Hence, R is symmetric.
Transitive: Let (a, b) ∈ R and (b, c) ∈ R, where a, b, c ∈ Z.
⇒ a - b = n × k and b - c = n × m, where k, m ∈ Z
Adding, a - c = n ( k + m) 
So, (a, c)∈ R, Hence, R is transitive.
Therefore, R is an equivalence relation.
Example:-
Write the smallest and largest equivalence relation on the set A = {1, 2, 3}.
Solution: The smallest equivalence relation on the set A is IA .
The largest equivalence relation on set A  is 
A × A 




MEMORY MAPS

A relation in set A is a subset of . We also write it as 

.
Relation R on set A is a subset of , i.e 
A relation R on set A is said to be an empty relation if no element of set A is related to any element of set A, i.e, 
A relation R on set A is called a universal relation if each element of A is related to every element of A, i.e 
A relation R on set A is called an identity relation if each element of A is related to itself only.i.e, we write 
Reflexive Relation:
A relation R in a set A is said to be reflexive, if , for every  or we say aRa, for every .
Note:- An identity relation is reflexive relation but reflexive relation may or may not be identity relation.
Symmetric Relation:
A relation R in a set A is said to be symmetric, if , for all . We can also say , for every 
Transitive Relation:
A relation R in a set A is said to be transitive, if  and  , for every . We can also say , for all 
Equivalence Relation:
A relation R in a set A is said to be an equivalence relation if relation R is reflexive, symmetric and transitive.







Functions
Introduction:

Function from set A to set B:- Let A and B be two non-empty sets, then a function  from set A to set B is a rule (or map or correspondence) which associates each element of set A to exactly one element of set B. If  is a function from set A to set B, then we denote it by .
Example:-
Check whether the maps in the following diagram are functions or not.
[image: ][image: ][image: ][image: ]
(i) (ii) (iii) (iv)   	
 
Solution:  Every element in  has exactly one image in . So,  is a function.
 Every element in  has exactly one image in . So,  is a function.
 Element  in  does not have an image in . So,  is not a function.
 Element  in  does not have exactly one image in . So,  is not a function. 
Domain, Co-domain, and Range of a function:-

Let  be function, then
(i) set A is called the domain of function .
(ii) the set B is called the Co-domain of .
(iii) the set of all images of elements of set A under  is called range or image set of  under .

Remarks:-
· The range of A under  is denoted by .
· If  then,  is called an image of  under , and  is called pre-image of .
· The range is always a subset of the co-domain.
· 

If , then the number of functions from A to B is 

Types of Functions:-



1. One-one function or Injective function:- A function  is said to be one-one if no two elements of A have the same image, i.e., if  for all  


or  for all .

Remarks:-
· 
If a function  is not one-one then it is called the many-one function.
· 

if a function    is one-one then 
· 
If , then no of one-one function from A to B

     
Example:-
Check whether the function in the diagrams is one-one or not.
[image: ][image: ]
(i)	(ii) 	



Solution:  Every element in  has a different image in . So,  is a one-one function.
 Elements  and  in  have the same image 2 in . So,  is not a one-one function.
2. Onto function or Surjective function:-




A function  is said to be onto if, for each , there exists  such that , we say that  is pre-image of . In other words,  is onto if Range of  Co-domain of , i.e., if every element in B has a preimage in A.



Remarks:-
· 
If a function  is not onto then it is called into function.
· 

If a function   is onto then 
· 
Let A be any finite set such that  then, the number of onto functions from A to A is .
Example:- Check whether functions in the following diagram are onto:
[image: ][image: ]
(i) 	(ii)	


Solution:  Since, every element in  has preimage in , so,  is onto function.
 Since,  does not have pre-image in  so,  is not onto function.
3. Bijective Function:-

A function  is said to be bijective if it is both one-one and onto.
Remarks: 
· If  is a bijection, then .
· Let  and  be two non-empty finite sets such that  and . Then,
Number of bijective functions from  to 


Example:-
Classify the following function as one– one, onto, or bijection:
 defined by .
Solution: One – one: Let  be any two elements.
Then, 
 
So,  is one – one.
Onto:  Let  be any element. 
Then,   

For , we have .
So,  is not onto.
Hence,  is not a bijection.
Composition of Functions:-


The composition of two functions is a chain process in which the output of the first function becomes the input of the 2nd function. Let  and  be two functions.




For every , there is exactly one element . For , there is exactly one element . This result is a new function from A to C as shown in the figure.

[image: ]

Remarks:-Definition: Let  and  be any two functions. Then the composition of f and g is a function  defined as .

· 
The composition  exists if the range of domain of g.
· 
The composition  exists if the range of  domain of f.
· It may be possible  exists but  does not exist
· gof and fog may or may not be equal.



Example: If  is given by . Find gof and fog show that .
Solution: 
and  
Properties of the composition of Functions:-
1.  Composition of functions is not necessarily commutative. Let  and , then .


2. Composition of functions is associative. Let  then 


3. Let  and  be two functions.
      (i) If both are one-one then gof is one-one
      (ii) If both are onto then gof is onto.



4.  Let  and  be two functions such that 
    (i) If gof is onto, then g is onto.			  
    (ii) If gof is one-one then f is one-one.
    (iii) If gof is onto and g is one-one then f is onto.	
    (iv) If gof is one-one and f is onto then g is one-one.
Example: 





Let  be signum function as  and , be the greatest integer function given by . Do fog and gof coincide in ?
Solution:-

Let  be any element 


 






Also  as  



 for every  ; so fog and gof does not coincide in 
The inverse of a Function:-







Let f be a one-one and on-to function from A to B. Let  be an arbitrary element of B. Then f being onto, there exists an element such that , Also f being one-one this x must be unique. Thus for each , there exists a unique element such that . So we may define a function denoted by . Such that . [image: ]Definition (1)
Let  be both one-one & onto function, then  is a function which associates to each y of B, a unique x of A such that  is called the inverse of function f.



The function  is called the inverse of f. 

Remarks:-Definition (2)
Another definition of the inverse function. Let  be one-one and onto function, then the function  such that  and , where  are identity functions on A and B respectively, is called the inverse of f i.e .

· If the inverse of a function  exists then  is called an invertible function.
· A function  is invertible if and only if  is one-one and onto.
· The two definitions of the Inverse function given above are equivalent.
· 

The domain of Range of f and range of domain of f.
· 

 the domain of f i.e   is an identity function.
· 

· 
If f is one-one and onto then  is also one-one and onto.
Working Rule to find Inverse of a Function:-
Let  defined by 
Step – I:- Prove that f is one-one i.e take  and show that 
Step – II:- Prove that f is onto i.e for any , there exists 
Step – III:- Find x in terms of y from  let 

Example -1


Consider  given by . Show that f is invertible, find the inverse of f.
Solution: Given  defined by .
One – one: Let  be any two elements.
Then, 
 
 So,  is one – one.
Onto: Let   be any element. 
Then, 
 
For every  we have . So,  is onto.
Thus,  is a bijection and hence invertible.
So,  exists and we have   ]
Hence, the inverse of  is given by .
Properties of Invertible Functions:-



(1) If   are two invertible functions. Then gof is also invertible with .

(2) 	If   is invertible, then its inverse is unique.


(3) 	If  is invertible then 




(4) 	Let  and  be two functions such that  then f and g are bijections and .
Example:



If  and the function . Write .
Solution: .
Example:



If  show that  for all . What is the inverse of
Solution: Given .
Now, .
, for all .
Since,  for all 
So, for all 
, for all 
Hence, the inverse of  is given by for all .

Example: 


Show that the modulus function , given by  is neither one-one nor onto.
Solution:-


For one-one   		


As  but  so f is not one-one

For onto 	Co-dom of f = R

As Range  co-dom f so f is not onto
Example: 
Give an example of a function
(i) Which is one-one but not onto		(ii) Which is not one-one but onto
(iii) Which is neither one-one nor onto.
Solution:-



(i) Let  and let . Since every element of A has different images in B so f is one-one. Also, the element  that does not have a pre-image is A. So f is not onto



(ii)  Let  and  Since  have the same image 4 is B. So, g is not one-one. Also, every element of  B has a pre-image is A, so g is onto




(iii)  and . Since elements  have the same image 4 in B. So h is not one-one. Also, the element  does not have a pre-image in A so h is not onto.
Example: 





If the function  is defined by , . Then find fog and show that fog is invertible. Also find , Hence find .


Solution:-



Here  defined by . Now to prove fog is invertible. One-one:- Let 






So fog is one-one Onto:- let  be any element then 





……………………… (1)


For every,  we have  so fog is onto.


Thus, fog is an invertible function so  exists and from (1) 
Example: 



If the function  is veritable, then find . Hence prove that .
Solution:-


Given  defined by 


One-one: Let and 






So f is one-one


Onto:- Let  be any element then 





…………………………..(1)


So f is onto. Thus f is on invertible function so  exists and from (1) we have 

The inverse of f is given by 

Now 


Example: 





Consider  and  define as  for all . Show that 
Solution:- 



Given , defined by  defined by 


Now  such that 








Also  such that 







Hence, 

MEMORY MAPS
A function  is said to be one-one (or injective), if the images of distance elements of A under the rule f are distinct in B. i.e for every  
or we can also say that 
Onto (surjective) function:
A function  is said to be onto(or surjective), if every element of B is the image of some element of A under the rule f, i.e for every , there exists an element  such that .
Note: A function is onto if and only if range of 







One-one and onto (bijective) function: A function is said to be one-one and onto
(or bijective) if f is both one-one and onto.



Composition of function: Let and  : B (range of f) be 
two functions. Then the composition of functions f and g is a function 
from A to C and is denoted by gof. We define gof as 
. For working, on element x first we apply f 
rule and whatever result is obtained in set B, we apply g rule on it to get the required result in set C.





Invertible function: A function  is said to be invertible, if there exists a function such that . The function g is called the inverse of f and is denoted by .
Note:- For a function to be invertible, it must be one-one and onto, i.e. bijective.
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