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Chapter- 6
APPLICATIONS OF DERIVATIVES
[bookmark: _GoBack]Rate of change of bodies
Derivative as a rate measure
Introduction: 
In this section, we shall study the physical meaning of the derivative         and then
Apply it to some real-life situations
Rate of change of Quantities: 
Let,                  be a function of  x.
                                                                                               [image: ]
Let,        be the change in x, and        corresponding to a small change in y. (        and       are called increments)
Then 
Now, the average rate of change of y with respect to x =         
and instantaneous rate of change of y  w. r. t. x  =                  
Since                                                                                            
              Instantaneous rate of change of  y  w. r. t. x 
We write rate of change of y with respect to x instead of ‘instantaneous rate of change of  y  w. r. t. x’ 
Hence,           the rate of change of  y   w. r. t. x 
Problems on the rate change
Problem-1
 Find the rate change of the area of the circle w. r. t. its radius. How fast is the area changing with respect to the radius when the radius is 3cm?
Answer: 
Let r be the radius of the circle  and A be the area of the circle.
So,                
Differentiating w. r. t. r we get
                                               which is the rate of change of area w. r. t.  r.
When r = 3 cm, we obtain 


Problem-2 
The total cost C(x) associated with the production of x units of an item given by                
Find the marginal cost when 3 units are produced, where the marginal cost we mean the instantaneous rate of change of total cost at any level of output.
Answer:
Since marginal cost is the rate of change of total cost with respect to the output
Marginal cost (MC) =   
=
When x = 3 we get 
Marginal cost (MC)=
Hence the required marginal cost is 30.02 rupees. (approximately) 


Problem-3
A particle moves along the curve                     . Find the point on the curve at which the y- coordinate is changing 8 times as fast as the x- coordinate.
Answer: 
Given curve is                       ----------(1)
A.T.Q. y- coordinate is changing 8 times as fast as the x- coordinate.
Therefore,                       ------------(2)
Now differentiating equation (1) w.r.t. ‘t’ we get

                                
                                  
 
When 
                                                , hence points on the curve (4, - 4) &

Problem- 4
A ladder 5cm long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/sec. How fast its height on the wall decreasing when the foot of the ladder is 4cm away from the wall?
Answer: Let OB (length of ground from the wall) = x cm, 
 OA (length of the wall from the ground)= y cm
Given AB(length of the ladder)=5cm.
By Pythagoras theorem, we have                           ---------(1)
Again given that 
Now differentiating equation (1) with respect to ‘t’ we get



From equation (1) when x =4 then y= 3
                       so, the height of the wall decreasing at the rate      cm/sec. 

Problem-5
Sand is pouring from a pipe at the rate of 12             . The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast the height of the sand cone increasing with the height is 4 cm?
Answer:
Consider the height and radius of the sand-cone formed at time t second by y cm and x cm respectively.
As per the given statement                                .
The volume of the cone (v) = 

Now, As 
So,
                                                               (as y = 4cm)
                                                        which is increment in height.
Problem-6 
The length of the rectangle is decreasing at the rate of 3 cm/ minute and the width y is increasing at the rate of 2cm/minute. When x = 10 cm and y = 6cm , find the rate change of 
(a) The perimeter  (b) the area of the rectangle.
Answer:
Since the length x is decreasing and the width y is increasing w. r. t. time, we have 
                              and 
(a) The perimeter P of the rectangle is given by 

(b) The area A of the rectangle is given by
                                                                                 
                                                                                                        (As x= 10cm, y = 6 cm)

Increasing and Decreasing Functions
In this topic, we shall study, A function f(x) is said to be increasing or decreasing on [a,b] if
(i) The value of f(x) increases with an increase in x. 
                                                     OR
(ii) The value of f(x) decreases with the decrease in x.
Definition
Increasing Function:-
           Let I be an open interval contained in the domain of real-valued function f, then f is said to be 
(i) Increasing(    ) on I, if 
(ii)  Strictly increasing on I  if


Decreasing Function:-
           Let I be an open interval contained in the domain of real-valued function f, Then f is said to be 
(i) Decreasing(    ) on I, if 
(ii) strictly decreasing on I if 


 


Monotonic Function (Increasing or decreasing of a Function on an interval)
A function f(x) is said to be monotonic on an interval (a, b) if it is either increasing or decreasing on (a, b).
NECESSARY AND SUFFICIENT CONDITIONS FOR MONOTONICITY
Now, we see how to determine the function increasing and decreasing using the derivative of a function.
NECESSARY CONDITION
Let f(x) is continuous on [a, b] and differentiable on (a, b).
(i) If f(x) is strictly increasing on (a, b) then                   for all
(ii) If f(x) is strictly decreasing on (a, b) then                  for all 
SUFFICIENT CONDITION
Let f(x) be a differentiable function defined on an open interval (a, b)
(i)      If                 for all                 then f(x) is increasing on (a, b).
(ii)     If                 for all                 then f(x) is decreasing on (a, b).
Working rules for finding out the interval for increasing and decreasing function. 
Step-1
      Find out          of the given function.
Step-2
      If               then, the function is an increasing function.
      If               then, the function is decreasing function. 
Problems
Problem- 1
Find the intervals in which the function                         is increasing or decreasing.
Answer: 
The given function is                       .
Differentiating w. r. t.  ‘x’ both sides we get.

For increasing, let 
Hence, the function is increasing on
For decreasing, let  
Hence, the function is decreasing on  

Problem- 2
Find the intervals in which the function                                             is increasing or decreasing.
Answer: 
The given function is                       .
Differentiating w. r. t.  ‘x’ both sides we get.

Let


[image: ]When 
                                               is negative, hence given function is decreasing.

When 
                                            is positive, hence given function is increasing.

When
                             is negative, hence given function is decreasing.
[image: ]
From the above observation given function is increasing on(-2, -1) and decreasing on[image: ]

Problem- 3
Find the intervals in which the function                                        is increasing or decreasing.
Answer: 
The given function is                       .
Differentiating w. r. t.  ‘x’ both sides we get.


For increasing 

But not equal to 3
For decreasing

But not equal to -1
Hence function is increasing on                           and decreasing  

Problem- 4
Show that the function f given by                                                            is strictly increasing on R.                                    
Answer: 
Given function                                               
Now



Hence the function is strictly increasing on R set.
Problem- 5
Find the intervals in which the function is given by 
Answer: 
Given function                                               
Now
Let
Here for the general solution 

                                                   When


When                                                                                                 When 
                              is increasing function.                                                          is decreasing function

Problem- 6
Find the intervals in which the function given by                                                             is strictly increasing or decreasing. 

Answer: 
Given function                                               
Now


Here for the general solution is

When                               when 

Hence intervals are 
Given function is positive on                  and                     , negative on 
Therefore f(x) is increasing on 
And decreasing on 

Problem- 7
Show that                                                             is increasing function of x throughout its domain. 
Answer: 
Given function








Hence, the given function is increasing throughout its domain.

Problem- 8
Show that                                        is increasing function of     in               . 
Answer: 
Given function








Hence, the given function is an increasing function. 



TANGENTS AND NORMALS
INTRODUCTION 
In this topic, we shall use the derivative of the function                    to find the equation of tangent and normal to the curve at a given point
Slope or Gradient of a line:
If a line makes an angle        with the positive direction of x-axis in the anticlockwise direction, 
Then            is called the slope of the line.
The slope of the line perpendicular to the x-axis is not defined.
The slope of the line parallel to the x-axis is zero.

Equation of Tangent and Normal at a point to a curve: 
Let                     be a curve and                  be a point on it.
Then we know that slope of the tangent to the curve                   
at the point                 is given by                                    

Equation of tangent at a point:
As we know that the equation of a line passing through the point              having slope m is

Therefore the equation of the tangent to the curve                    at                 is





Equation of normal at a point:
We know that normal to the curve at the point P in a line perpendicular to the tangent at P.

Hence the slope of the normal to the curve                  at P =                                     

Equation of the normal to the curve                   at                 is 




Working Rule: 
Step I. Find        from the equation of the given curve
Step II. If the equation of the tangent and normal at              is needed, find        at            . This value of        will is the slope of the tangent at            .    
          the slope of normal at            =                                               
Step III. If the value of         at             be m, the equation of normal and tangent at            will be

Step IV. If         at a point               is zero then the tangent is parallel to the x-axis
              If        is at               is undefined then the tangent at               is parallel to y-axis and 
Normal at               is parallel  to the x-axis. In this case equation of the tangent at P will be and that of normal will be           .
PROBLEMS
Problem: 1 
Find the slope of the tangent to the curve            at the point x =1.
Ans:     [image: ]                                                 ---------(1) 
[image: ]
[image: ]
[image: ]
Problem: 2 
Find the equation of the tangent and normal  to the curve                           at the point whose x-coordinate is 3.
Ans:                                                      
[image: ][image: ]
[image: ]
[image: ]
Problem:3 
Find the points on the curve                                  , where the tangent is parallel to the x-axis.
[image: ]
[image: ]
                              [image: ]
[image: ]
[image: ]
Problem:4 
At what point on the curve                                             , is the tangent parallel to the y-axis.

Solution:
[image: ]
[image: ]
[image: ]
Problem:5 
Find the equations of tangents to the curve                                which is perpendicular to the         l                       line.    
Solution: 
The given curve is                                 --------------- (1)
[image: ]
We have to find  the equation of tangents which
are perpendicular to the line                              --------- (3)
[image: ]
[image: ]
[image: ]
[image: ]
Their equations are 
[image: ]
Problem:6 
Find the equation of the tangent to the curve                                                           .
Solution:
[image: ]
[image: ]     [image: ]          
[image: ]
[image: ]
Problem:7 
Find the equation of the normal  to the curve                 which passes through the point (1,2).                                          .
Solution: The given curve is                  . ------- (1)
Let the point of contact of the required normal with the given curve be            .
hence                  --------- (2)
Differentiating both sides w.r.t. x we get                                 . 
 


Now the equation of the normal at              is
                                                                                                                     

                                                                                         ----------- (3)     
[image: ]
[image: ]
Problem:8
[image: ][image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
Use of Derivative in Approximation
Differentials: - 


         Let y = f(x) be a differential function of a function of x.  and let be a small change in x and let the corresponding change in y be . We defined.
(a) 
The differential of x, denoted by dx is given by.
(b) The differential of y, denoted by dy, is given by dy = f’(x) dx


In case dx = is very small in comparison to x then. 


Note :
Absolute Error :

The error  in x is called the absolute error in x.


Relative Error :


If is an error in x, then,  is called the relative error in x.
Percentage Error :


If  is an error in x, then  is called the percentage error in x.
Remember:


Let y = f(x) be a function of x, and let  be a small change in x. Let the corresponding change in y be,  then 



But 	(approximately) 

     (approximately)

     (approximately)

Example – 1 

Use differential to approximate.
Answer:


Take  . Let x = 36 and let  Then 




Or =6 + 

Now dy is approximately equal to  and is given by 



Thus the approximate value is  is 6 + 0.05 = 6.05

Example – 2

Use differential to approximate 

Answer:
[image: ]
[image: ]


[image: ]

Example- 3

Find the approximate value of f(3.02), where f(x) = 
Answer:
[image: ]
[image: ]
[image: ]
Example -  4 
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximate error in calculating its volume.
Answer:
[image: ]
[image: ]                                                                                 
[image: ]
Example – 5 
Find the approximate change in volume V of a cube of side x meters caused by increasing the side by 1%.
	
Answer:

The volume of the cube V of side x is given by 


 = 
Because 1 percent of x is 0.01 x


Hence the approximate change in the volume of the cube is 0.03 
















Maxima and Minima
First Derivative Test of Maxima and Minima

Local Maximum and minimum values of y = f(x)

Definition of local Maximum value:
A function f(x) said to have a local maximum value at x = a, if f(a) is greater than any other value that f(x) can have in some suitably small neighborhood of x = a.
 OR
A function is said to have local maximum value f(a) at x = a if f(x) stop to increase at x =a and begins to decrease as x increases beyond a.  

Definition of Local Minimum value:
A function f(x) said to have a local minimum value at x = a, if f(a) is less than any other value that f(x) can have in some suitably small neighborhood of x = a.
 OR
A function is said to have local minimum value f(a) at x = a if f(x) stop to decrease at x =a and begins to increase as x increases beyond a.  

First Derivative Test  for Local Maxima Of a Function 
[image: ]
First Derivative Test For Local Minima Of a Function 

Function f(x) has a local minimum value at x = a, if f(x) stops to decrease at x = a and begins to increase as x increases beyond ‘a’. 
[image: ]
Working Rules For the First Derivative Test 
Step-1
Find        of the given function.
Step-2
let                 for critical points (say x= a, b, c……),  (remember the critical point is the point where 
the derivative of the function is equal to zero.)
Step-3
(i)If          changes its sign from +ve to –ve as x passes through the values ‘a, b, c……’ then function attain the maximum value.
(ii) If          changes its sign from -ve to +ve as x passes through the values ‘a, b, c……’ then function attain the minimum value.
Problems
Problem-1 
Find all points of local maxima and local minima of the function given by
Answer:
Given function  
Let
    
                        
When
                                        is positive. 
When
                                         is negative. 
From, above number line, we observe that at x = -1,             changes its sign from +ve to –ve as x passes through x= -1 and at  x=1,             changes its sign from  -ve to +ve as x passes through      x =1.
Therefore function attains local maximum value at x = -1 and local minimum value at x = 1.
Problem-2 
Find all points of local maxima and local minima as well as corresponding local maximum and local minimum values for the function 
Answer:
Given 
Then 



At points of local maxima and local minima, we must have 

So,  


Since  is always positive, therefore the sign of            is the same as the 

Clearly from number line does not changes its sign as x passes through 1.  so x = 1 neither a point of local maximum nor a point of the local minimum. X =1 is the point of inflection. But x = -1 the function has local maximum value. And  at              function attains local maximum value.
[image: ][image: ]Hence, local maximum value is f(-1)= 0 and local minimum value is                    
Points Of Inflection 
[image: ]
Problem-3 
Find  the point of inflection of the function 
Answer:
Given  
Then                                                                                 
For critical point 

Now,  when 
                     is positive. 
            When 
                     is positive.
Here           does not changes its sign. Hence function has point of inflexion at x = 0
Second Derivative Test Of Maxima 
As proved in the first derivative test, f(x) has the maximum value at x = a if        changes sign from +ve to –ve at x = a.     
But       is itself a function of x.  Since it changes sign from +ve to –ve. Therefore, it decreases at x =a and hence its 

derivative                                is –ve at x = a.

Hence the function y = f(x) has maximum value at x = a if 
(i)         , x =a 

(ii) Is – ve at  x = a 

Second Derivative Test Of Minima 
As proved in the first derivative test, f(x) has minimum value at x = a if        changes sign from - ve to +ve at x = a.     
But       is itself a function of x.  Since it changes sign  from - ve to +ve. Therefore, it decreases at 
x =a and hence its 

derivative                              is +ve at x = a.
Hence the function y = f(x) has maximum value at x = a if 
(i)         , x =a 

(ii)      Is + ve at  x = a
NOTE:  
If                    at x =  a ,then the function may have point of inflexion, If                 at x = a, then 
The function has a point of inflection.
Problems
Problem-1
Determine the maximum and minimum value of the function
Answer:
Given
 
 
                                         ,   

For critical point  let                                                                hence , x = 0, 1, 3
Now  

At x =0 ,                                                           , so function has neither maximum nor minimum value 
at x = 0
At x = 1        ,                                                              , hence function has maximum value. Maximum 
value is f(1)=0
At x = 3,                                                                                                        ,hence function has minimum value , 
Minimum value is f(3)= -118. 
Problem-2
Determine the local maxima and minima value of the function                              
Answer:
Given

For critical point let 


                                        
                                                        When 
Now,            
  
At               ,
[image: ]Hence function attains maximum value.
So, the maximum value is 

Maximum and Minimum value of a function inclosed interval. (Absolute Maxima and Absolute Minima) 
[image: ]
Working rules to find out Absolute Maxima and Absolute Minima. 
We may use the following working rules for finding out the maximum (absolute maximum) and the minimum (absolute minimum) of a function f defined on the closed interval [a, b].
STEP-1
Find
STEP-2
Take                      and find all values of x, let                               be the values of x.


STEP-3
Take the maximum and minimum values out of the values           ,          ,          , ……….          ,          .
The maximum and minimum values obtained are the absolute maximum or largest value and absolute minimum or smallest value of the function.
Problems
Problem-1
Find the absolute maximum and minimum values of a function f given by                                             on the interval [1,5]
Answer:
We have

For critical point 
 
We shall now evaluate the value of f at these points and the end points of the interval [1, 5], i.e. at x = 1, x = 2, x = 3 and x = 5. So



Thus, we conclude that the absolute maximum value of f on [1, 5] is 56, occurring at x =5
And the absolute minimum value of f on [1, 5] is 24 which occurs at x =1.
Problem-2
Find the absolute maximum and minimum values of a function f given by                                          

Answer:
We have


For critical point                    gives 
Again              is not defined at x =0 , so, the critical points are x = 0 and
Now evaluating the value of f at critical points x = 0,             and at the end points of the interval x = -1, x = 1 
We have 



Hence we conclude that absolute maximum value of f is 18 that occurs at x = -1, 
And Absolute minimum value of f is            that occurs at  

Word Problems relating to maxima and minima (plane curve) 
Problem-1
Find two numbers whose sum is 24 and whose product is as large as possible.
Answer : 
Let two numbers x and y.
A.T.Q.   x + y = 24   or y = 24 – x -----------(1)
Let P be the product of two numbers 
So,
Differentiating w. r. t. x we get 

For critical point 

Now
                                                
                                                  
                                                     , hence P attains maximum value at x = 12 therefore y = 12.
[image: ]
[image: ]
Problem-3
An Apache helicopter of the enemy is flying along the curve given by                   . A soldier, placed at (3, 7) wants to shoot down the helicopter when it is nearest to him. Find the nearest distance.


Answer: 

Given curve                    -------(1)
Let point P(x, y) on the curve is the position of the helicopter, and point A(3, 7) is the position of the soldier.
Now,                        from equation (1)
Let                 is the nearest distance.

Differentiating w. r. t. x we get.



For critical point
[image: ][image: ]
Now                                            from equation (2), Therefore
Hence, Distance D attains the minimum value at x = 1
So point P coordinate is (1, 8)
So, the nearest Distance   [image: ]
Problem-4
A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10cm. Find the dimension of the window to admit maximum light through the whole opening.

Answer:
[image: ]Problem-5
[image: ]
[image: ]
[image: ]
[image: ]
Word Problems relating to maxima and minima (solid figures) 
Problem-1
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]	[image: ][image: ][image: ]

Problem-2
[image: ]
[image: ]
[image: ][image: ][image: ][image: ][image: ][image: ][image: ]
Problem-3
[image: ][image: ][image: ]
[image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ]
Problem-4
[image: ][image: ][image: ][image: ][image: ][image: ]
[image: ][image: ][image: ][image: ][image: ][image: ]
Problem-5
[image: ][image: ][image: ]
[image: ][image: ]
[image: ][image: ][image: ]
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Given curve is y2
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Given point is x=1

From (1), when x=1,y? +1

Points are (L,1) and (1,~1)
Differentiating both sides of (1) w.r. to x, we get
d_ L
a 2y

dy
2y 2=y
Y
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at (L1),
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Hence slope of tangents at points (1,1) and (1,~ 1) are % and —E‘ respectively.
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The given curve is y=x” +4x+1
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‘When 3, y=3% +4x3+1
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We want to find the tangent and normal to curve (1) at the point
Differentiating (1) w.rt. x we get

D orera
dx

= (dy] =2x3+4=10
»

&l

P(3,22)
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Equation of the tangent to (1) at P (3,22) is

or
Equation of the normal to (1) at P is

1
-2=-— (x-3
0 m(x )

or 10y=-220=-x+3
or x+10y=223
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Since the tangent is parallel to x-axis
N -0
dx
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2-1=0
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or 3? —drdx—

Qor (x+1)(x-1)=0
1

x=l-2
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Putting the values of x in (1), we have

when x=ly=P-r-1+3=2
when ! LI S BN
3 27 9 3 27

Hence required points are (1,2) and [ %3217]
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For tangents to be parallel to y-axis,

' is undefined =% i undefined = y=2
™ =2
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Substituting for y in (1), we get

x? +4-2%-8+1=0
= x? —2x-3=0
= x=3,-1

At points (3,2) and (~1,2), the tangents to curve (1) are parallel to
Jeaxis.
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Now slope of this line !

14

Slope of the tangent =14.
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Using (2), we get
%2 +2=14 = x*=4 = x=%2
From (1), x=2 = y=22+2x2+6=18
—2)} +2x(~2)+6=-6

2 = y=

and
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Tangents to (1) are to be drawn at P(2,18)
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and Q (- 2,- 6) with slope 14.
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y-18=14(x-2) = lax—y=10
y46=14(x+2) = ldx—y+22=0
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Given curve is x=1-cos

0-sin®
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Equation of tangent at e=§ i.e, at point [
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image421.png
A square piece of tin of side 24 cm is to be made into a box without top by cutting a square




image422.png
from each corner and folding up the flaps to form a box. What should be the side of the square to be cut
off so that the volume of the box is maximum? Also, find this maximum volume.
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SOLUTION  Let x cm be the length of a side of the square which is cut-off from each corner of the
plate. Then, dimensions of the box as shown in Fig. 18.41 are Length =24 -2, Breadth=24 - 2x
and height = x,
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Let V be the volume of the box. Then,
V = (24-22)% x = 4x® —96x +576x
v

2 v
= 12x? ~192x +576 and —5 = 24x-192
dx ax?

The critical numbers of V are given by ’2—" 0.
™
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v _,
dx

12x% ~192x+576 = 0 = x> ~16x+48 = 0= (x-12) (x-4) = 3 = x = 12,4





image427.png
But, x =12 is not possible. Therefore, x = 4.

2,
Clearly, [’;—V] = 24x 4-192 <0. Thus, V is maximum when x = 4.
x=4
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Hence, the volume of the box is maximum when the side of the square is 4 cm.
Putting x =4 in V =(24-21)%x, we obtain that the maximum volume of the box is given by
V =(24 —8)2 x 4 =1024 cm3.
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Find' the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.
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SOLUTION  Let 1 be the heightand R be the radius of the base of the inscribed cylinder. Let V' be
the volume of the cylinder. Then,
V=amR2n D
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Applying Pythagoras Theorem in AOCA, we get
. 04a?=0c?+ca?

ny?
= r2=(E] +R2= R%=r
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Substituting the value of R? in (i), we get

A Pl %
4
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V=nr?h-=h?
4

av 2 3nhk? d2 3nh
a2 an L

dn 4 M 2
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The critical numbers of V are given by ’% -o.

av 2 3mh?_ _a?

=0 = nr--

2
an 0= k==
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2
Clearly, [drv
4
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2
Putting h=2l in R2= z—%,weobtzin R

% -

Substituting the values of R? and It in (i), we find that the maximum volume of the cylinder is
given by

2 o) _ 4nr®
V= R2h = (‘ Z](*J =
r "3NB) T3l
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Show that the height of the cylinder of maximum volume that can be inscribed in a sphere
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of adiusais =
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SOLUTION  Let r be the radius of the base and 7 be the height of the cylinder ABCD which is
inscribed in a sphere of radius a. It is obvious that for maximum volume the axis of the cylinder
must be along the diameter of the sphere. Let O be the centre of the sphere such that OL = x. By
symmetry, O is the mid-points of LM. Applying Pythagoras Theorem in AALO, we get
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04% = o1? + AL*
a? = X2+ AL?
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Let V be the volume of the cylinder. Then,
V = n(AL)?x LM

= V = n(AL)?x 2(OL)

= V = n(a® -x2)x 2x
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V =2 x-x%)
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dx

2
=20 -3 and =Y - _125x
P
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The critical numbers of V are given by ﬂd‘f
™
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=0=2n@-32%) = 0= x =
dx
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2
Clearly, [‘1 ;’J
ax° ) a3

= —127x =<0,

V3
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and hence LM =2x = In otherwords, the height of

Hence, V is maximum when

3
the cvelic of maximum volume is 2a/+/3.
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Show that the volume of the largest cone that can be inscribed in a sphere of radius R 1s
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8/27 of the volume of the sphere.
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SOLUTION  Let VAB be a cone of greatest volume inscribed in a sphere of radius K. It1s obvious
that for maximum volume the axis of the cone must be along a diameter of the sphere. Let VC be
the axis of the cone and O be the centre of the sphere such that OC = x. Then,
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C = VO+0OC = R +x = height of the cone.
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Applying Pythagoras Theorem in AACO, we get
04% = Ac?+0c?
= AC? = 0A%-0C?=R2-
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Let V be the volume of the cone. Then,
V= % n(AC)? (VC)
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SV = %n(Rz—x2)(R+x)

= ’%’ = %I{{RZ —x2—2x(R+x)}

(i)
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2
aﬂzln(Rz»ZRx—sz) mdu=ln(~2R—6x)
dx 3 a? 3

The critical numbers of V are given by ';—V =0
™
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v
dx
= R?-2Rr-322=0= (R-3%)(R+x)=0= R-3x = 0 = x —

Putﬁngx:%inl - énﬁZR - 6%), we get

R
- [ R 0]
3 [ +x#0]
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J :7§Rn<0.
x=R/3
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Thus, V is maximum when x =§ . Putting x J;: in (), we obtain

2 3
V' = Maximum volume of the cone %K[Rzai-](ﬂ+5] - 32nR

9 3 81

]

8 (4 3 8
—nR3| =5
7 (3 3 ] > (Volume of the sphere).
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Prove that the radius of the right circular cylinder of greatest curved surface which can be




image463.png
inscribed in a given cone is half of that of the cone.
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SOLUTION »Let VAB be the cone of base radius r = 0A and height It = VO. Let a cylinder of base
radius OC = x and height =00" be inscribed in the cone.
Clearly, AVOB~ A B' DB
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B'D DB
Ghiy
BD r-x
B'D = k=2
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Let Sbe the curved surface area of the cylinder. Then,
$ = 2=(OC) (B'D)

o soamhlton _2mhe o)
2
- B 2mh gy ana £S5 . _4mh
dx r dv2 r
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The critical numbers of S are given by ? =0.
x

ds 2nh r
2.0 280 ) = ¢ = =
o = » (r-2x) =0= «x 3

2
Clearly, S ==ixk

<0 forallx.
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Hence, $ is maximum when x =% ie. radius of the cylinder is half of the radius of the cone.
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