

Integration of Trigonometric Functions

SUBJECT :MATHEMATICS
CHAPTER NUMBER:7
CHAPTER NAME :INTEGRALS

CHANGING YOUR TOMORROW

Integrals in Different Forms

When the integral involves some trigonometric functions then some known trigonometric identities are used to evaluate integral easily.

Integrals of the form $\int \sin^m x \, dx$ or $\int \cos^m x \, dx$, $m \in N$

To evaluate we express $\sin^m x$ (or $\cos^m x$) in terms of sines and cosines of multiples of x . For which we use the following trigonometrical identities.

$$(a) \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$(b) \sin^3 x = \frac{3 \sin x - \sin 3x}{4}$$

$$(c) \cos^2 x = \frac{1 + \cos 2x}{2}$$

$$(d) \cos^3 x = \frac{\cos 3x + 3 \cos x}{4}$$

Example

Evaluate

$$(a) \int \sin^2 x \, dx$$

$$(b) \int \cos^3 x \, dx$$

$$(c) \int \cos^4 x \, dx$$

Integrals in Different Forms

Integrals of the form $\int \sin^m x \cdot \cos^n x \, dx$, $m, n \in N$

To evaluate the integrals of the form $\int \sin^m x \cdot \cos^n x \, dx$ we may use the following algorithm

Integrals in Different Forms

Algorithm

Step – I:- Obtain the integral say $\int \sin^m x \cdot \cos^n x \, dx$

Step – II:- Check the exponents of $\sin x$ and $\cos x$

Step – III:- If the exponent of $\sin x$ is an odd positive integer put $\cos x = t$

If the exponent of $\cos x$ is an odd positive integer put $\sin x = t$

If the exponents of $\sin x$ and $\cos x$ both are odd positive integers put either $\sin x = t$ or $\cos x = t$.

If the exponents of $\sin x$ and $\cos x$ both are positive even integers then express $\sin^m x \cdot \cos^n x$ in terms of sines and cosines of multiples of x by using trigonometric results.

Example

Evaluate

$$(a) \int \sin^3 x \cdot \cos^4 x \, dx$$

$$(b) \int \sin^2 x \cdot \cos^2 x \, dx$$

Integrals in Different Forms

Integrals of the form $\int \sin p x \cdot \cos q x \, dx$ or $\int \sin p x \cdot \sin q x \, dx$ or $\int \cos p x \cdot \cos q x \, dx$

To evaluate these types of integral firstly multiply and divide by 2 then use the following trigonometric identities.

$$2 \sin A \cdot \cos B = \sin(A + B) + \sin(A - B)$$

$$2 \cos A \cdot \sin B = \sin(A + B) - \sin(A - B)$$

$$2 \cos A \cdot \cos B = \cos(A + B) + \cos(A - B)$$

$$2 \sin A \cdot \sin B = \cos(A - B) - \cos(A + B)$$

Example

Evaluate

$$(a) \int \sin 4x \cdot \cos 3x \, dx$$

$$(b) \int \sin 4x \cdot \sin 8x \, dx$$

$$(c) \int \cos 2x \cdot \cos 4x \cdot \cos 6x \, dx$$

Assignment

1. Evaluate the integrals

(a) $\int \frac{1}{1+\tan x} dx$

(b) $\int \frac{1}{\sin^2 x \cos^2 x} dx$

(c) $\int \cos^4 2x dx$

(d) $\int \tan^3 2x \sec 2x dx$

(e) $\int \cos^3 x dx$

(f) $\int \sin 2x \sin 4x \sin 6x dx$

2. Exercise 7.3 from NCERT book.

THANKING YOU
ODM EDUCATIONAL GROUP