

Maxima and Minima

SUBJECT : MATHEMATICS

CHAPTER NUMBER: 6

CHAPTER NAME : Application of Derivatives

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

First Derivative Test of Maxima and Minima

Local Maximum and minimum values of $y = f(x)$

Definition of local Maximum value:

A function $f(x)$ said to have a local maximum value at $x = a$, if $f(a)$ is greater than any other value that $f(x)$ can have in the some suitably small neighbourhood of $x = a$.

OR

A function is said to have local maximum value $f(a)$ at $x = a$ if $f(x)$ stop to increase at $x = a$ and begins to decrease as x increases beyond a .

Definition of Local Minimum value:

A function $f(x)$ said to have a local minimum value at $x = a$, if $f(a)$ is less than any other value that $f(x)$ can have in the some suitably small neighbourhood of $x = a$.

OR

A function is said to have local minimum value $f(a)$ at $x = a$ if $f(x)$ stop to decrease at $x = a$ and begins to increase as x increases beyond a .

First Derivative Test For Local Maxima Of a Function

Function $f(x)$ has a local maximum value at $x = a$, if $f(x)$ stops to increase at $x = a$ and begins to decrease as x increases beyond ' a '.

Thus when x is slightly less than ' a ', y increases and $\frac{dy}{dx}$ is $+ve$

When x is slightly greater than ' a ', y decreases and $\frac{dy}{dx}$ is $-ve$

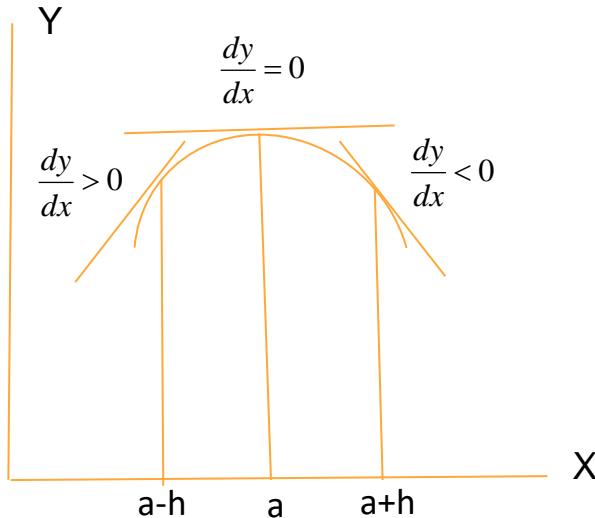
Therefore $\frac{dy}{dx}$ changes its sign from $+ve$ to $-ve$ as x passes through the

Value ' a '. But it can not change sign without passing through the value zero which must evidently be attained at $x = a$.

Hence, we have the following two conditions for $y = f(x)$ to have a
A local Maximum value $f(a)$ at $x = a$.

(i) $\frac{dy}{dx} = 0$ at $x = a$.

(ii) $\frac{dy}{dx}$ changes its sign from $+ve$ to $-ve$ as x passes through the value a .



First Derivative Test For Local Minima Of a Function

Function $f(x)$ has a local minimum value at $x = a$, if $f(x)$ stops to decrease at $x = a$ and begins to increase as x increases beyond ' a '.

Thus when x is slightly less than ' a ', y decreases and $\frac{dy}{dx}$ is $-ve$

When x is slightly greater than ' a ', y increases and $\frac{dy}{dx}$ is $+ve$

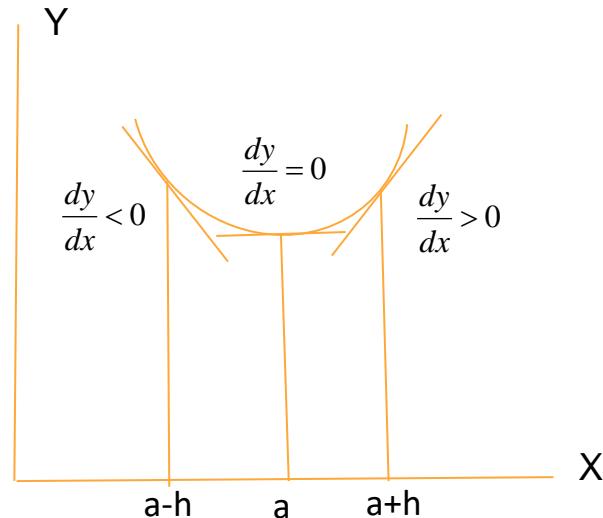
Therefore $\frac{dy}{dx}$ changes its sign from $-ve$ to $+ve$ as x passes through the

Value ' a '. But it can not change sign without passing through the value zero which must evidently be attained at $x = a$.

Hence, we have the following two conditions for $y = f(x)$ to have a
A local Minimum value $f(a)$ at $x = a$.

(i) $\frac{dy}{dx} = 0$ at $x = a$.

(ii) $\frac{dy}{dx}$ changes its sign from $-ve$ to $+ve$ as x passes through the value a .



Working Rules For First Derivative Test

Step-1

Find $\frac{dy}{dx}$ of the given function.

Step-2

let $\frac{dy}{dx} = 0$ for critical points (say $x = a, b, c, \dots$), (remember critical point is the point where derivative of the function is equal to zero.)

Step-3

- (i) If $\frac{dy}{dx}$ changes its sign from $+ve$ to $-ve$ as x passes through the values ' a, b, c, \dots ' then function attain the maximum value.
- (ii) If $\frac{dy}{dx}$ changes its sign from $-ve$ to $+ve$ as x passes through the values ' a, b, c, \dots ' then function attain the minimum value.

Problem: 1

Find all points of local maxima and local minima of the function given by $f(x) = x^3 - 3x + 3$

Problem: 2

Find all points of local maxima and local minima as well as corresponding local maximum and local minimum values for the function $f(x) = (x - 1)^3(x + 1)^2$

Points of Inflection

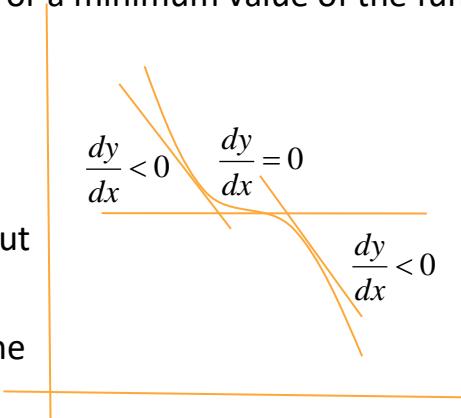
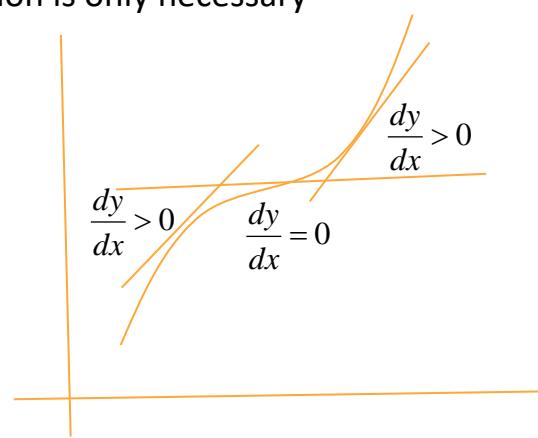
For the function $y = f(x)$ to have maximum or minimum value at $x = a$, $\frac{dy}{dx} = 0$, at $x = a$. But if $\frac{dy}{dx} = 0$ at $x = a$, it is not essential that the function may have maximum or minimum values at $x = a$. For it may happens that $\frac{dy}{dx}$ does not change sign from $-ve$ to $+ve$ as $+ve$ to $-ve$ as x passess through value a and cosequently, function may go on increasing or decreasing.

Thus the condition that $\frac{dy}{dx} = 0$ for a maximum or a minimum value of the function is only necessary and not sufficient. $y = f(x)$

DEFINITION

A point on the curve $y = f(x)$ at which $\frac{dy}{dx} = 0$ but $\frac{dy}{dx}$ does not change sign as x passes through the

point is called a point of inflection.



Problem: 3

Find the point of inflexion of the function $f(x) = x^5$

HOME ASSIGNMENT

Q1. Find the local maximum and local minimum values of the function f given by

$$f(x) = 3x^4 + 4x^3 - 12x^2 + 12$$

Q2. Find the local maximum and local minimum values of the function $f(x) = x\sqrt{1-x}$,
 $0 < x < 1$.

Q3. Prove that the function $f(x) = x^3 + x^2 + x + 1$ do not have maxima and minima.

THANKING YOU
ODM EDUCATIONAL GROUP