

Increasing and Decreasing Functions

SUBJECT : MATHEMATICS

CHAPTER NUMBER:6

CHAPTER NAME : Application of Derivatives

CHANGING YOUR TOMORROW

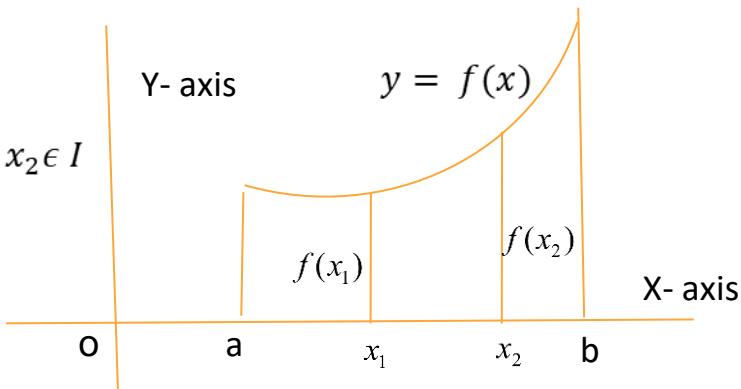
Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

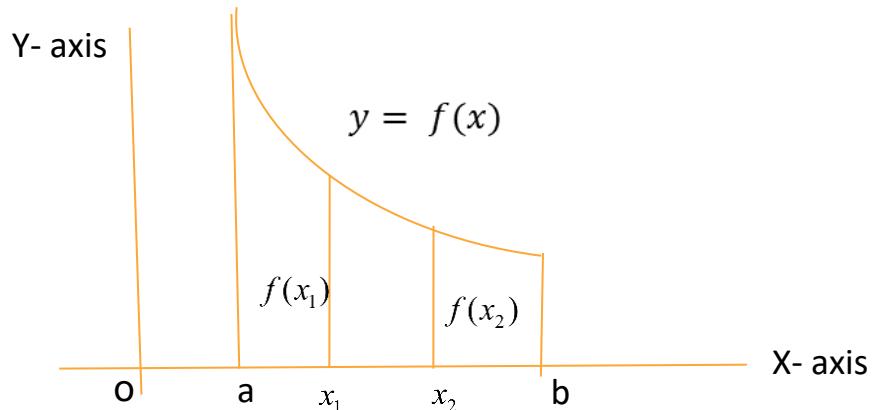
Increasing and Decreasing Function


In this topic, we shall study, A function $f(x)$ is said to be increasing or decreasing on $[a,b]$ if

- (i) The value of $f(x)$ increases with the increase in x .
OR
- (ii) The value of $f(x)$ decreases with the decrease in x .

INCREASING FUNCTION:-

Let I be an open interval contained in the domain of real valued function f , Then f is said to be


- (i) Increasing on I , if $x_1 < x_2$ then $f(x_1) \leq f(x_2)$ for $x_1, x_2 \in I$
- (ii) Strictly increasing on I if $x_1 < x_2$ then $f(x_1) < f(x_2)$ for $x_1, x_2 \in I$

DECREASING FUNCTION:-

Let I be an open interval contained in the domain of real valued function f , Then f is said to be

- (i) Decreasing on I , if $x_1 < x_2$ then $f(x_1) \geq f(x_2)$ for $x_1, x_2 \in I$
- (ii) Strictly decreasing on I if $x_1 < x_2$ then $f(x_1) > f(x_2)$ for $x_1, x_2 \in I$

Monotonic Function (Increasing or decreasing of a Function on an interval)

A function $f(x)$ is said to be monotonic on an interval (a,b) if it is either increasing and decreasing on (a,b) .

NECESSARY AND SUFFICIENT CONDITIONS FOR MONOTONICITY

Now, we see how to determine the function increasing and decreasing using derivative of a function.

NECESSARY CONDITION

Let $f(x)$ be continuous on $[a,b]$ and differentiable on (a,b) .

- (i) If $f(x)$ is strictly increasing on (a,b) then $f'(x) > 0$ for all $x \in (a, b)$
- (ii) If $f(x)$ is strictly decreasing on (a,b) then $f'(x) < 0$ for all $x \in (a, b)$

SUFFICIENT CONDITION

Let $f(x)$ be a differentiable function defined on an open interval (a,b)

- (i) If $f'(x) > 0$ for all $x \in (a, b)$ then $f(x)$ is increasing on (a,b) .
- (ii) If $f'(x) < 0$ for all $x \in (a, b)$ then $f(x)$ is decreasing on (a,b) .

Working rule for finding out the interval for increasing and decreasing function.

Step-1

Find out $\frac{dy}{dx}$ of the given function.

Step-2

If $\frac{dy}{dx} > 0$ then, function is increasing function.

If $\frac{dy}{dx} < 0$ then, function is decreasing function.

Problem- 1

Find the intervals in which the Function $y = 2x^3 - 3x$ is increasing or decreasing.

Problem- 2

Find the intervals in which the Function $y = -2x^3 - 9x^2 - 12x + 1$ is increasing or decreasing.

HOME ASSIGNMENT

Q1. Determine the value of x for which $f(x) = \frac{x-2}{x+1}, x \neq -1$ is increasing or decreasing.

Q2. Determine the interval in which the function $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is decreasing or increasing.

Q3. Find the intervals where $f(x) = (x - 1)^3(x - 2)^2$ is increasing or decreasing.

THANKING YOU
ODM EDUCATIONAL GROUP