

	 [INTERFACE PYTHON WITH MYSQL]
	| COMPUTER SC.| STUDY NOTES

Interface Python with SQL Database:
· A database is nothing but an organized collection of data.
· Data is organized into rows, columns and tables and it is indexed to make it easier to find relevant information.
· All companies whether large or small use databases.
· So, it becomes necessary to develop project/software using any programming language like python in such a manner which can interface with such databases which support SQL.
Generalized form of Interface of python with SQL Database can be understood with the help of this diagram.
· Form/any user interface designed in any programming language is Front End whereas data given by database as response is known as Back-End database.
· SQL is just a query language; it is not a database. To perform SQL queries, we need to install any database for example Oracle, MySQL, MongoDB, PostGres SQL, SQL Server, DB2 etc.
· Using SQL in any of the DBMS, databases and table can be created and data can be accessed, updated and maintained. The Python standard for database interfaces is the Python DB-API.
· Python Database API supports a wide range of database servers, like msql, mysql, PostgreSQL, Informix, oracle, Sybase etc.
Why Choose Python for Database Programming?
Following are the reason to choose python for database programming:
· Programming is more efficient and faster as compared to other languages.
· Portability of python programs.
· Support platform independent program development.
· Python supports SQL cursors.
· Python itself take care of open and close of connections.
· Python supports relational database systems.
Porting of data from one DBMS to other is easily possible as it supports large range of APIs for various databases.
SQL Connectors:
· We must download a separate DB API module for each database we need to access.
· Suppose we need to access to Oracle database as well as a MySQL database, we must download both the Oracle and the MySQL database modules.
· The DB API provides a minimal standard for working with databases using Python structures and syntax where possible.
· We shall work with mysql connector library for the same.
· Once MySQL connector is installed , we can write python code using MySQL.connector library that can connect to MySQL database
Steps for Creating Database Connectivity Applications:
The following 7 steps are followed.
· Step 1:	 start python
· Step 2: Import the package required for database programming
· Step 3:	 Open a connection to database
· Step 4:	 Create a cursor instance
· Step 5:	 Execute a query.
· Step 6:	 Extract data from result set
· Step 7:	 Clean up the environment
Step 1: Start python
· Start python’s editor where you can create the python script.
Step 2: Import the package required for database programming
· Import mysql.connector package in your python script
	
import mysql.connector
			Or
	import mysql.connector as a
Step 3: Open a connection to database
· Establish a connection to a MySQL database using connect() of mysql.connector package.
· Connection_object=mysql.connector.connect(host=<host name>, user=<user name>, passwd=<password>, database=<database name>)
 where:
· User is the user’s name on MySQL
· Password is the password of the user
· Host-name is the database server hostname or IP address
· Database is optional which provides the database name
Connection Object:
· A database connection object controls the connection to the database.
· It represents a unique session with a database connected from within a program.
· To check if the connection is successful or not
 if obj.is_connected():
print(“connected successfully)
Where obj is the connection object returned from the connect()
Step 4: Create a cursor instance
· A database cursor is a special control structure that facilitates the row-by-row processing of records in the resultset.
· A resultset is a set of records retrieved as per query.
· Cursor objects interact with the MySQL server using a MySQLConnection object.​
​
How to create cursor object and use it:
Cursor object can be created by calling the cursor() through the connection object
import mysql.connector as m
obj=m.connect(host="localhost",user="root",passwd="root“,database=“student”) ​
cur=mydb.cursor()​
Step 5: Execute a query
A query can be executed using the execute() with the cursor object.
 Cursor_object.execute(“sql query”)
import mysql.connector ​as m
obj=m.connect(host="localhost",user="root",passwd="root”,database="school")​
cur=obj.cursor()​
cur.execute(“select * from student")​
Step 6: Extract data from result set
This step is required if you need to extract records from the retrieved result set.
Once the result of the query is in the form of a resultset stores in the cursor object, you can extract the data using the following fetch…()
· fetchall()
· fetchone()
· fetchmany(n)
· rowcount property

fetchall():
The method fetches all (or all remaining) rows of a query result set and returns a list of tuples. If no more rows are available, it returns an empty list. It will return all the records retrieved as per the query in a tuple form.
How to fetch all records of a table at run time:
import mysql.connector mydb=mysql.connector.connect(host="localhost",user="root",passwd="root”,database="school")
mycursor=mydb.cursor()
mycursor.execute("select * from student")
myrecords=mycursor.fetchall()
for x in myrecords:
 print (x)
fetchone():
· It will return one record from the result set in a tuple or list form.
· If there are no more records, it returns None.
How to fetch one record of a table at run time:
import mysql.connector
mydb=mysql.connector.connect(host="localhost",user="root",passwd="root”,database="school")
mycursor=mydb.cursor()
mycursor.execute("select * from student")
row=mycursor.fetchone()
print(row)
row = mycursor.fetchone()
print(row)
fetchmany()​:
· This method accepts no. of records to fetch and returns a tuple where each record itself is a tuple.
· If there are no more records, it returns None.
How to fetch some records of a table at run time:
import mysql.connector mydb=mysql.connector.connect(host="localhost",user="root",passwd="root”,database="school")
mycursor=mydb.cursor()
mycursor.execute("select * from student")
myrecords=mycursor.fetchmany(4)
for x in myrecords:
 print (x)
rowcount attribute:
The rowcount is a property of cursor object that returns the number of rows retrieved from the cursor so far.
import mysql.connector
mydb=mysql.connector.connect(host="localhost",user="root",passwd="root”,database="school")
mycursor=mydb.cursor()
mycursor.execute("select * from student")
row=mycursor.fetchone()
print(row)
row = mycursor.fetchone()
print(row)
count=mycursor.rowcount
print(“Total no. of rows retrieved so far :”,count)
Find the Output:
import mysql.connector
mydb=mysql.connector.connect(host="localhost",user="root",passwd="root”,database="school")
mycursor=mydb.cursor()
mycursor.execute("select * from student")
row=mycursor.fetchmany(2)
count=mycursor.rowcount
print(“Total no. of rows retrieved so far :”,count)
row = mycursor.fetchone()
row=mycursor.fetchmany(3)
count=mycursor.rowcount
print(“Total no. of rows retrieved so far :”,count)
mydb.close()
Step 7: Clean up the environment
After doing all the processing in the final step you need to close the connection established.
<connection object>.close()
import mysql.connector mydb=mysql.connector.connect(host="localhost",user="root",passwd="root”,database="school")
mycursor=mydb.cursor()
mycursor.execute("select * from student")
myrecords=mycursor.fetchmany(4)
for x in myrecords:
 print (x)
mydb.close()

Parameterized Queries:
The SQL queries which are based on some parameters or values that you provide from outside are called parameterized queries.
Example:
Select * from student where roll=4;
Select * from employee where age>40 and dept=“accounts”;
To execute parameterized queries, you need to form SQL query string that includes values of parameters.
Creating SQL query string:
Select * from student where section=“B”
	“Select * from student where section={}”.format(“B”)
Select * from student where section=“B” and marks>70
		Select * from student where section={} and marks>{}”.format(“B”,70)
How to insert record in a table at run time:
import mysql.connector
mydb=mysql.connector.connect(host="localhost",user="root",passwd="root”,database="school")​
mycursor=mydb.cursor()​
St=“insert into student values({},{},{},{},{})”.format(“Akash”,2,16,80,”A”)
mycursor.execute(St)​
mydb.commit()​​
mydb.close()
In above program the insert query inserts a new row to the student table. ​
Commit() must be called with the connection object for queries that changes the data of the database table so that changes are reflected in the database.
How to update record of a table at run time:
import mysql.connector
mydb=mysql.connector.connect(host="localhost",user="root",passwd="root”,database="school")​
mycursor=mydb.cursor()​
mycursor.execute("update student set marks={} where rollno={}“.format(80,2))​
mydb.commit()​
mydb.close()
​In above program the update query updates the marks with 80 of rollno=2. ​
How to delete record of a table at run time:
import mysql.connector
mydb=mysql.connector.connect(host="localhost",user="root",passwd="root”,database="school")
mycursor=mydb.cursor()
mycursor.execute("delete from student where rollno={}“.format(1))
mydb.commit()
 mydb.close()
In above program delete query will delete a record with rollno=1.
commit() method is necessary to call for database transaction.

ODM Educational GroupPage 21

image1.jpeg
EDUCATIONAL GROUP

Y Changing your Tomorrow M

