

MATHEMATICS (WORKSHEET), CLASS - XI

Chapter – Straight Lines

01. If A is a point on the X-axis with abscissa – 5 and B is a point on the Y-axis with ordinate 8. Find the distance AB

02. If the points A(–2, –1), B(1, 0), C(x, 3) and D(1, y) are the vertices of a parallelogram, find the values of x and y (without using distance formula)

03. Find the area of ΔABC the mid-points of whose sides AB, BC, and CA are D(3, –1), E(5, 3) and F(1, –3), respectively.

04. If four points A(6, 3), B(–3, 5), C(4, –2) and D(x, 3x) are given in such a way $\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}$, then find x.

05. The area of a triangle is 5 sq units and two of its vertices are (2, 1) and (3, –2). If the third vertex is (x, y), where $y = x + 3$, then find the coordinates of the third vertex.

06. The slope of a line is double the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, then find the slope of the lines.

07. What is the value of y so that the line through (3, y) and (2, 7) is parallel to the line through (–1, 4) and (0, 6)?

08. Without using the Pythagoras theorem, show that A(4, 4), B(3, 5) and C(–1, 1) are the vertices of a right-angled triangle.

09. If three points $(h, 0)$, (a, b) and $(0, k)$ lie on a line, show that $\frac{a}{h} + \frac{b}{k} = 1$

10. By using the slope method, find the value of x for which points A(5, 1), B(1, –1) and C(x, 4) are collinear.

11. Find the slope of a line, which passes through the origin and mid-point of the line segment joining the points P(0, –4) and Q(8, 0).

12. Find the equation of the perpendicular bisector of the line segment joining the points A(2, 3) and B(6, –5)

13. Two lines passing through the point (2, 3) intersect each other at an angle of 60° . If the slope of one line is 2, then find the equation of the other line.

14. Find the equations of the altitudes of the triangle whose vertices are A(7, –1), B(–2, 8) and C(1, 2)

15. The length L (in centimeters) of a copper rod is a linear function of its Celsius temperature C . In an experiment if $L = 124.942$ when $C = 20$ and $L = 125.134$ when $C = 110$, express L in terms of C .

16. Find the equation of the line intersecting the X -axis at a distance of 3 units to the left of origin with slope-2.

17. Find the equation of the lines which cuts-off intercepts on the axes whose sum and product are 1 and -6 respectively.

18. Find the equation of the line passing through $(1, 2)$ and parallel to the line $y = 3x - 1$.

19. Find the equation of the line passing through the point of intersection of $2x + y = 5$ and $x + 3y + 8 = 0$ parallel to the line $3x + 4y = 7$

20. Find the values of θ and p , if the equation $xcos\theta + ysin\theta = p$ is the normal form of the line $\sqrt{3}x + y + 2 = 0$.

21. Prove that the lines $3x + y - 14 = 0$, $x - 2y = 0$ and $3x - 8y + 4 = 0$ are concurrent.

22. Find the equation of the line passing through $(1, 2)$ perpendicular to $x + y + 7 = 0$

23. Find the coordinates of the foot of perpendiculars from the point $(2, 3)$ on the line $y = 3x + 4$.

24. Find the equation of the straight line passing through the point of intersection of the lines $5x - 6y - 1 = 0$ $3x + 2y + 5 = 0$ and perpendicular to the line $3x - 5y + 11 = 0$.

25. Find the angle between the lines $\sqrt{3}x + y = 1$ $x + \sqrt{3} = 1$ and.

26. Reduce the equation $x - \sqrt{3}y + 8 = 0$ into normal form. Find the perpendicular distance from the origin and angle between perpendicular and the positive X -axis

27. Find the equation of the line passing through the point of intersection of the lines $4x + 7y - 3 = 0$ $2x - 3y + 1 = 0$ and that has equal intercepts on the axes.

28. Show that the equation of the line passing through the origin and making an angle θ with the line $y = mx + \text{cis} \frac{y}{x} = \pm \frac{m + \tan\theta}{1 - m\tan\theta}$.

29. If p and q are the lengths of perpendiculars from the origin to the lines $xcos\theta - ysin\theta = kcos2\theta$ $xsec\theta + ycosec\theta = k$ and, respectively. Prove that $p^2 + 4q^2 = k^2$.

30. If the sum of perpendicular distances of the variable point $P(x, y)$ from the lines $x + y - 5 = 0$ $3x - 2y + 7 = 0$ and is always 10. Show that P must move on a line.

31. Find the points on the line $x + y = 4$ which lie at a unit distance from the line $4x + 3y = 10$.

32. Find the equation of the lines passing through the point $(1, 0)$ and at a distance $\frac{\sqrt{3}}{2}$ from the origin.

33. Prove that the product of lengths of the perpendicular drawn from the points $(\sqrt{a^2 - b^2}, 0)$ and $(-\sqrt{a^2 - b^2}, 0)$ to the line $\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1$ is b^2 .

34. Find the new coordinates of the point $(3, -4)$ if the origin is shifted to $(1, 2)$ by a translation.

35. If the axes are shifted to the point $(-1, 3)$ without rotation, then transform the equation of a line $y + 3x = 2$ into new axes.

