

SEQUENCES AND SERIES

Introduction To Sequence And series

SUBJECT : MATHEMATICS

CHAPTER NUMBER:09

CLASS NUMBER :01

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Introduction to sequence and series

Numbers are in a determined order forms a sequence.

Sequence

A sequence is a function whose domain is the set of natural numbers and range is a subset of set of real numbers.

i.e $f : N \rightarrow S$ (where $S \subseteq R$) be defined by $f(n) = a_n$, where $n \in N$

A sequence is represented by $\{a_n\}$ or (a_n)

We have $\{a_n\} = \{a_1, a_2, a_3, \dots, a_n, \dots\}$ here a_1, a_2 are called the terms or enumerations of the sequences.

a_n is the nth term and is called general term of the sequence

If $\{a_1, a_2, a_3, \dots\}$ are real numbers, the $\{a_n\}$ is called a real sequence.

Types of Sequence:

1. Finite sequence

A sequence is said to be finite if it contain finite number of terms

2. Infinite sequence

A sequence which is not a finite sequence ,is known as infinite sequence.

Representation of a sequence

A real sequence can be represented by different ways.

(i)A real sequence can be represented by listing its few terms till the rule for writing down other terms becomes clear.

e.g 3,5,7,...is a sequence and rule for writing down other terms is $(2n+1)$

(ii) A real sequence can be represented in terms of a rule or an algebraic formula of writing the n th term of the sequence

e.g. The sequence 1,3,5,7,... can be written as $a_n = 2n - 1$

(iii) Sometimes the sequence i.e an arrangement of numbers has no visible pattern but the sequence can be represented by the recurrence relation .

e.g. The sequence 1,1,2,3,5,8,... has no visible pattern but its recurrence relation is $a_1 = a_2 = 1$ and $a_{n+1} = a_n + a_{n-1}$, $n \geq 2$ This sequence is called Fibonacci sequence.

Example:-1

Find the first three terms of the sequence defined by, $a_n = \frac{n}{n^2 + 1}$

Solution:-

$$a_1 = \frac{1}{1+1} = \frac{1}{2}$$

$$a_2 = \frac{2}{4+1} = \frac{2}{5}$$

$$a_3 = \frac{3}{9+1} = \frac{3}{10}$$

Example:-2

If the n th term, a_n is given by $a_n = n^2 - n + 1$ write down its first five terms

Solution:-

$$a_1 = 1 - 1 + 1 = 1$$

$$a_2 = 4 - 2 + 1 = 3$$

$$a_3 = 9 - 3 + 1 = 7$$

$$a_4 = 16 - 4 + 1 = 13$$

$$a_5 = 25 - 5 + 1 = 21$$

Example:-3

Find the first four terms of the sequence defined by $a_1 = 3$ and $a_n = 3a_{n-1} + 1$ for all $n > 1$

Solution:-

$$a_2 = 3a_1 + 1 = 3(3) + 1 = 10$$

$$a_3 = 3a_2 + 1 = 3(10) + 1 = 31$$

$$a_4 = 3a_3 + 1 = 3(31) + 1 = 94$$

Series

Series:-

The sum of terms of a sequence is called a series. If a_1, a_2, a_3, \dots are terms of a sequence, then

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n \text{ is a series}$$

A series is said to be finite or infinite according as the corresponding sequence is finite or infinite.

Example:-4

Let the sequence a_n is defined as $a_1=2, a_n=a_{n-1}+3$ for $n \geq 2$. Find first five terms and write corresponding series.

Solution:-

We have $a_1=2$ and $a_n=a_{n-1}+3$, so $a_2=5, a_3=8, a_4=11, a_5=14$

Thus first five terms of given sequence are 2, 5, 8, 11 and 14.

Also corresponding series is $2+5+8+11+14+\dots$

**THANKING YOU
ODM EDUCATIONAL GROUP**

SEQUENCES AND SERIES

Arithmatic Progression

SUBJECT : MATHEMATICS
CHAPTER NUMBER:09
CLASS NUMBER :02

CHANGING YOUR TOMORROW

ARITHMETIC PROGRESSION(A.P.)

A sequence a_1, a_2, a_3, \dots is called as A.P of $a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1} = \dots = d$
where d is called the common difference.

i.g 1, 4, 7, 10, 13, is an A.P

To check whether a given sequence is an AP or not. We use the following steps

Step I Find n th term a_n

Step II Replace n by $n+1$ to get $(n+1)^{th}$ term i.e a_{n+1}

Step III Find the difference between a_n and a_{n+1} i.e calculate $a_{n+1} - a_n$

Step IV If value obtained in step III is independent of n then the given sequence is an AP otherwise not.

Example:-1

Show that the sequence defined by $a_n = 4n + 5$ is an AP. Also find its common difference.

Solution:-

$$a_n = 4n + 5$$

$$\Rightarrow a_{n+1} = 4(n+1) + 5$$

$$= 4n + 9$$

$$\text{Now, } a_{n+1} - a_n$$

$$= (4n + 9) - (4n + 5) = 4$$

Which is a constant and is independent of n. Thus the given sequence is an A.P and the common difference is 4.

Example:-2

Show that the sequence defined by $a_n = 2n^2 + 3$ is not an AP.

Solution:-

$$a_n = 2n^2 + 3$$

$$\begin{aligned} \Rightarrow a_{n-1} &= 2(n-1)^2 + 3 \\ &= 2n^2 + 2 - 4n + 3 \\ &= 2n^2 - 4n + 5 \end{aligned}$$

$$\text{Now, } a_n - a_{n-1}$$

$$\begin{aligned} &= (2n^2 + 3) - (2n^2 - 4n + 5) \\ &= 4n - 2 \end{aligned}$$

Which is not independent of n

Thus the given sequence is not an AP; we cannot determine the common difference.

Properties:-

01. If a constant is added or subtracted to each term of an AP, then the resulting sequence is also an A.P
02. If each term of an AP is multiplied by a constant, then its resulting sequence is also an AP
03. If each term of an AP is divided by a non-zero constant, then the resulting sequence is also an AP
04. If a_1, a_2, a_3, \dots are in AP and b_1, b_2, b_3, \dots are in AP, then the sequence obtained by terminals addition is also an AP. i.e $a_1 + b_1, a_2 + b_2, a_3 + b_3, \dots$ is an A.P

Note:- If d is the common difference and a is the first term, then the terms of the sequence which is in AP are $a, a + d, a + 2d, a + 3d, \dots$

General term of an AP:-

If a be the first term and d be the common difference of an AP, then its n^{th} term is

$$a_n = a + (n - 1)d.$$

Example: - 3

Show that the sequence 9, 12, 15, 18, is an AP. Find its 16th term.

Solution: - Here $12 - 9 = 15 - 12 = 18 - 15 = \dots = 3$

So, the given sequence is as AP

Here, $a = 9, d = 3, n = 16$

$$\text{Now, } a_{16} = 9 + 15 \times 3 = 54$$

Example:-4

Which term of the sequence 72, 70, 68, 66, is 40 ?

Solution:- Here, $70 - 72 = 68 - 70 = \dots = -2$

$a = 72$, let the n th term is 40, i.e $a_n = 40$

Now, $a_n = a + (n - 1)d$

$$\Rightarrow 40 = 72 + (n - 1)(-2)$$

$$\Rightarrow (-2)(n - 1) = -32$$

$$\Rightarrow n - 1 = 16 \Rightarrow n = 17$$

Hence, the 17th term of the sequence is 40.

Example:- 5

Which term of the sequence 4, 9, 14, 19, is 124?

Solution:- Here, $a = 4, d = 5, a_n = 124$

$$\text{Now, } a_n = a + (n-1)d$$

$$\Rightarrow 124 = 4 + (n-1)5$$

$$\Rightarrow 5(n-1) = 120$$

$$\Rightarrow n-1 = 24$$

$$\Rightarrow n = 25$$

Hence, the 25th term of the AP is 124.

Example:- 6

The sum of three numbers in AP is -3 and their product is 8. Find the AP

Solution:- Let the three numbers be $a - d, a, a+d$,

According to question sum of three numbers in AP is -3

$$\Rightarrow a - d + a + a + d = -3$$

$$\Rightarrow a = -1$$

Also their product is 8

$$\Rightarrow (a - d)a(a + d) = 8$$

$$\Rightarrow a(a^2 - d^2) = 8$$

$$\Rightarrow (-1)(1 - d^2) = 8$$

$$\Rightarrow 1 - d^2 = -8$$

$$\Rightarrow d^2 = 9$$

$$\Rightarrow d = \pm 3$$

When $d = 3$, the numbers are -4, -1, 2

When $d = -3$, the numbers are 2, -4, -4

**THANKING YOU
ODM EDUCATIONAL GROUP**

SEQUENCES AND SERIES

Arithmatic Mean And Its Related Problems

SUBJECT : MATHEMATICS

CHAPTER NUMBER:09

CLASS NUMBER :03

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

The Sum to n terms of A.P

Let $a, a+d, a+2d, \dots, a+(n-1)d$ be an A.P

Then $l=a+(n-1)d$

The sum S_n of n terms with first terms

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{n}{2} [a + a + (n-1)d]$$

$$= \frac{n}{2} [\text{First term} + \text{last term}]$$

Example:- 1

The sum of n terms of two arithmetic progression are in the ratio $(3n + 8) : (7n + 15)$. Find the ratio of their 12th terms.

Solution:- Let a_1, a_2 and d_1, d_2 be the first term and common difference of the first and second arithmetic progression, respectively. According to the given condition we have

$$\frac{\text{Sum to } n \text{ terms of first AP}}{\text{Sum to } n \text{ terms of second AP}} = \frac{3n + 8}{7n + 15}$$

$$\Rightarrow \frac{\frac{n}{2}[2a_1 + (n-1)d_1]}{\frac{n}{2}[2a_2 + (n-1)d_2]} = \frac{3n + 8}{7n + 15}$$
$$\Rightarrow \frac{2a_1 + (n-1)d_1}{2a_2 + (n-1)d_2} = \frac{3n + 8}{7n + 15} \quad \dots \dots \dots \quad (1)$$

Now $\frac{12\text{th term of first AP}}{12\text{th term of second AP}} = \frac{a_1 + 11d_1}{a_2 + 11d_2}$

$$\frac{2a_1 + 22d_1}{2a_2 + 22d_2} = \frac{3 \times 23 + 8}{7 \times 23 + 15} \quad (\text{By putting } n=23 \text{ in (1)})$$

$$\therefore \frac{a_1 + 11d_1}{a_2 + 11d_2} = \frac{12\text{th terms of first AP}}{12\text{th terms of second AP}} = \frac{7}{16}$$

Hence ,the required ratio is 7:16

Example:- 2

The income of a person is RS 3, 00,000 in, first year and he receives an increase of RS 10,000 to his income per year for next 19 years. Find the total amount , he received in 20 years.

Solution:-Here ,we have an AP with $a=3,00,000, d=10,000$ and $n=20$

Using the sum formula ,we get $S_{20} = \frac{20}{2} [600000 + 19 \times 10000] = 79,00,000$

ARITHMETIC MEAN

Let a and b be any two numbers

Then A_1, A_2, \dots, A_n are called n

AMS of a and b if

$a, A_1, A_2, \dots, A_n, b$ are in AP

Here, $(n+2)$ th term = b

If d is the common difference then $b = a + (n+2-1)d$

$$\Rightarrow b = a + (n+1)d$$

$$\Rightarrow b - a = (n+1)d$$

$$\Rightarrow d = \frac{b-a}{n+1}$$

$$\text{So, } A_1 = a + d = a + \frac{b - a}{n + 1}$$

$$A_2 = a + 2d = a + 2 \frac{(b - a)}{n + 1} \dots \quad A_n = a + n \left(\frac{b - a}{n + 1} \right)$$

A number A is called the AM of a and b if a, A, b are in AP

$$A - a = b - A$$

$$\Rightarrow 2A = a + b \Rightarrow A = \frac{a + b}{2}$$

Example:- 3

Insert 6 numbers between 3 and 24 such that the resulting sequence is an AP.

Solution:-Let A_1, A_2, A_3, A_4, A_5 and A_6 be six numbers between 3 and 24 such that

3, $A_1, A_2, A_3, A_4, A_5, A_6, 24$ are in A.P. Here $a=3, b=24, n=8$

Therefore $24=3+(8-1)d$, so that $d=3$

Thus

$$A_1=a+d=3+3=6;$$

$$A_4=a+4d=15;$$

$$A_2=a+2d=9$$

$$A_5=a+5d=18$$

$$A_3=a+3d=12$$

$$A_6=a+6d=21$$

Hence six numbers between 3 and 24 are 6, 9, 12, 15, 18 and 21.

**THANKING YOU
ODM EDUCATIONAL GROUP**

SEQUENCES AND SERIES

Geometric Progression

SUBJECT : MATHEMATICS
CHAPTER NUMBER:09
CLASS NUMBER :04

CHANGING YOUR TOMORROW

GEOMETRIC PROGRESSIONS

A sequence a_1, a_2, a_3, \dots of positive numbers is called a geometric progression if

$$\frac{a_n}{a_{n-1}} = r, \forall n$$

Here, r is called the common ratio

Example:- 1

The sequence $\frac{1}{3}, \frac{-1}{2}, \frac{3}{4}, \frac{-9}{8}$ is a GP since

$$\frac{-\frac{1}{2}}{\frac{1}{3}} = \frac{-3}{2}$$

$$\frac{\frac{3}{4}}{-\frac{1}{2}} = -\frac{3}{2}, \dots$$

PROPERTIES

Properties of Geometric progression:-

- 01.If all the terms of a G.P be multiplied or divided by the same non-zero constant, then it remains a G.P
- 02.The reciprocal of the terms of a given G.P form a G.P
- 03.If each term of a G.P be raised to the same power, then the resulting sequence also forms a G.P.
- 04.If the terms of a given G.P are chosen at regular intervals, then the new sequence so formed also forms a G.P
- 05.if a_1, a_2, a_3, \dots is a G.P of non zero non negative terms, then $\log a_1, \log a_2, \log a_3, \dots$ are in AP and vice versa.

General term of a G.P.

The n th term of a G.P is called the general term. If a is the first term and r is the common ratio, then n th term $= a_n = a r^{n-1}$.

Example:- 2

Find the 5th term of the progression $\frac{1}{4}, \frac{-1}{2}, 1, -2, \dots$

Solution:- Here, $a = \frac{1}{4}$

$$r = \frac{-\frac{1}{2}}{\frac{1}{4}} = -2$$

So, 5th term, $a_5 = a r^{5-1}$

$$= \frac{1}{4} \times (-2)^4$$

$$= \frac{1}{4} \times 16 = 4$$

Example:- 3

Find the 5th term of the progression $1, \frac{\sqrt{2}-1}{2\sqrt{3}}, \frac{3-2\sqrt{2}}{12}, \frac{5\sqrt{2}-7}{24\sqrt{2}}$

Solution:- Here, $a_1 = 1$

$$r = \frac{\frac{\sqrt{2}-1}{2\sqrt{3}}}{1} = \frac{\sqrt{2}-1}{2\sqrt{3}}$$

$$5^{\text{th}} \text{ term, } a_5 = a r^{n-1} = 1 \times \left(\frac{\sqrt{2}-1}{2\sqrt{3}} \right)^4 = \left(\frac{\sqrt{2}-1}{2\sqrt{3}} \right)^4 = \frac{(2+1-2\sqrt{2})^2}{16 \times 9}$$

$$= \frac{(3-2\sqrt{2})^2}{144} = \frac{9+8-12\sqrt{2}}{144} = \frac{17-12\sqrt{2}}{144}$$

n^{th} term from the end:-

The n^{th} term from the end of a term GP consisting m terms is the $(m-n+1)^{\text{th}}$ term from the beginning. So, $a_{m-n+1} = a r^{m-n}$

Note:-

The n^{th} term from the end of a GP with last term l and common ratio r is given by

$$a_n = l \times \left(\frac{1}{r}\right)^{n-1}$$

Example:-4

Find the fifth term from the end of the GP 3, 6, 12, 24,, 3072

Solution:- Here, $r = 2$, $l = 3072$

So, the fifth term from the end = $l \left(\frac{1}{r}\right)^4$

$$= 3072 \times \left(\frac{1}{2}\right)^4 = 3072 \times \frac{1}{16} = 192$$

Example:- 5

Which term of the G.P $2, 1, \frac{1}{2}, \frac{1}{4}, \dots$ is $\frac{1}{512}$?

Solution:- Here, $a = 2, r = \frac{1}{2}$

Let the n th term is $\frac{1}{512}$

$$\text{i.e } a_n = \frac{1}{512}$$

$$\Rightarrow a \cdot r^{n-1} = \frac{1}{512}$$

$$\Rightarrow 2 \left(\frac{1}{2} \right)^{n-1} = \frac{1}{512}$$

$$\Rightarrow \left(\frac{1}{2} \right)^{n-1} = \frac{1}{1024}$$

$$\Rightarrow \left(\frac{1}{2} \right)^{n-1} = \left(\frac{1}{2} \right)^{10}$$

$$\Rightarrow n-1=10$$

$$\Rightarrow n=11$$

Example:-6

The fourth, seventh and the last term of a GP are 10, 80, 2560 respectively. Find the first term and the number of terms in G.P

Solution:-

Let a be the first term and r be the common ratio of the given G.P

Here, $a_4 = 10$, $a_7 = 80$ and $a_n = 2560$

$$\Rightarrow ar^3 = 10, ar^6 = 80, ar^{n-1} = 2560$$

$$\text{Now, } \frac{ar^6}{ar^3} = \frac{80}{10}$$

$$\Rightarrow r^3 = 8$$

$$\Rightarrow r = 2$$

Since, $a r^3 = 10$

$$\Rightarrow a = \frac{10}{8}$$

$$\Rightarrow a = \frac{5}{4}$$

Since, $a r^{n-1} = 2560$

$$\Rightarrow \frac{5}{4} \times (2)^{n-1} = 2560$$

$$\Rightarrow 2^{n-1} = \frac{2560 \times 4}{5}$$

$$\Rightarrow 2^{n-1} = 512 \times 4$$

$$\Rightarrow 2^{n-1} = 2048$$

$$\Rightarrow 2^{n-1} = 2^{11} = n - 1 = 11 = n = 12$$

Example:- 7

If the sum of three numbers is G.P is 38 and their product is 1728. Find the numbers

Solution:- Let the numbers are $\frac{a}{r}, a, ar$

$$\Rightarrow \frac{a}{r} \times a \times ar = 1728$$

$$\Rightarrow a^3 = 1728$$

$$\Rightarrow a^3 = 12^3 = a = 12$$

Also, sum = 38

$$\Rightarrow \frac{a}{r} + a + ar = 38$$

$$\Rightarrow \frac{12}{r} + 12 + 12r = 38$$

$$\Rightarrow \frac{12}{r} + 12 + 12r = 38$$

$$\Rightarrow 12\left(\frac{1}{r} + 1 + r\right) = 38$$

$$\Rightarrow 12\left(\frac{1+r+r^2}{r}\right) = 38$$

$$\Rightarrow 12 + 12r + 12r^2 = 38r$$

$$\Rightarrow 12r^2 - 26r + 12 = 0$$

$$\Rightarrow 6r^2 - 9r - 4r + 6 = 0$$

$$\Rightarrow 6r^2 - 9r - 4r + 6 = 0$$

$$\Rightarrow 3r(2r-3) - 2(2r-3) = 0$$

$$\Rightarrow (3r-2)(2r-3) = 0$$

$$\Rightarrow r = 2/3 \text{ or } r = 3/2$$

If $r = 2/3$ the terms are 18, 12, 8

If $r = 3/2$, the terms are 8, 12, 18

**THANKING YOU
ODM EDUCATIONAL GROUP**

SEQUENCES AND SERIES

Sum To n-Terms Of a G.P

SUBJECT : MATHEMATICS

CHAPTER NUMBER:09

CLASS NUMBER :05

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Sum To n-Terms Of a G.P.

Let 'a' is the first term and r is the common ratio of the G.P. Then the sum of n terms is given by

$$S_n = a + ar + ar^2 + \dots + ar^{n-1}$$

$$= \begin{cases} \frac{a(1-r^n)}{1-r} & \text{if } r < 1 \\ na & \text{if } r = 0 \\ \frac{a(r^n-1)}{r-1} & \text{if } r > 1 \end{cases}$$

Note:- If ℓ is the last term of a G.P this $\ell = \frac{a - ar^n}{1 - r}$

$$\text{Now, } S_n = \frac{a - ar^n}{1 - r} = \frac{a - ar^{n-1} \cdot r}{1 - r} = \frac{a - \ell r}{1 - r}$$

$$\Rightarrow S_n = \frac{a - \ell r}{1 - r}$$

Example:- 1

Find the sum of eight terms of the G.P 3, 6, 12,.....

Solution:- Here, $a = 3, r = 2, n = 8$

$$\text{So, } S_n = \frac{3(2^8 - 1)}{2 - 1}$$

$$= 3 \times 255 = 765$$

Example:-2

Find the sum to 7 terms of the sequence $\left(\frac{1}{5} + \frac{2}{5^2} + \frac{3}{5^3}\right), \left(\frac{1}{5^4} + \frac{2}{5^5} + \frac{3}{5^6}\right), \left(\frac{1}{5^7} + \frac{2}{5^8} + \frac{3}{5^9}\right)$

Solution:-

$$\text{Here, } a = \left(\frac{1}{5} + \frac{2}{5^2} + \frac{3}{5^3}\right)$$

$$\Rightarrow a = \frac{25+10+3}{125} = \frac{38}{125}$$

$$\text{Here, } r = \frac{1}{5^3} = \frac{1}{125} < 1$$

$$\text{so, } S_7 = \frac{a(1-r^7)}{1-r}$$

$$= \frac{\frac{38}{125} \left(1 - \left(\frac{1}{125}\right)^7\right)}{1 - \frac{1}{125}} = \frac{\frac{38}{125} \left[1 - \left(\frac{1}{125}\right)^7\right]}{\frac{124}{125}} = \frac{19}{62} \left[1 - \left(\frac{1}{125}\right)^7\right]$$

Example:-3

Find the sum of the series $2 + 6 + 18 + \dots + 4374$

Solution:-

Here, $a = 2$, $\ell = 4374$, $r = 3$

$$\text{So, } S = \frac{a - \ell r}{1 - r}$$

$$= \frac{2 - 4374 \times 3}{1 - 3}$$

$$= \frac{-13120}{-2} = 6560$$

Example:- 4

Find the sum of the following series $5+55+555+5555+\dots\dots\dots$ to n term

Solution:- Let S be the sum of the series

$$S = 5 + 55 + 555 + 5555 + \dots\dots\dots \text{ to } n \text{ terms}$$

$$= 5(1 + 11 + 111 + 1111 + \dots\dots\dots \text{ to } n \text{ term})$$

$$= \frac{5}{9} [9 + 99 + 999 + 9999 + \dots\dots\dots \text{ to } n \text{ terms}]$$

$$= \frac{5}{9} [(10^1 - 1) + (10^2 - 1) + (10^3 - 1) + \dots\dots\dots + (10^n - 1)]$$

$$= \frac{5}{9} \{ (10^1 + 10^2 + 10^3 + \dots + 10^n) - n \}$$

$$= \frac{5}{9} \left[\frac{10(10^n - 1)}{10 - 1} - n \right]$$

$$= \frac{5}{81} [10^{n+1} - 9n - 10]$$

Example:-5

Find the sum to n -terms of the sequence given by $a_n = 2^n + 3n$, $n \in \mathbb{N}$

Solution:- We have $S_n = a_1 + a_2 + \dots + a_n$

$$\begin{aligned} \Rightarrow S_n &= (2 + 3 \times 1) + (2^2 + 3 \times 2) + (2^3 + 3 \times 3) + \dots + (2^n + 3 \times n) \\ &= (2^1 + 2^2 + 2^3 + \dots + 2^n) + 3(1 + 2 + 3 + \dots + n) \end{aligned}$$

$$= \frac{2(2^n - 1)}{2 - 1} + 3 \frac{n(n + 1)}{2}$$

$$= 2(2^n - 1) + \frac{3}{2}n(n + 1)$$

Example:-6

Find the sum to n terms of the series $11+103+1005+\dots$

Solution:-

Let $S_n = 11+103+1005+\dots$

$$= (10+1) + (10^2 + 3) + (10^3 + 5) + \dots + (10^n + (2n-1))$$

$$= (10 + 10^2 + 10^3 + \dots + 10^n) + [1 + 3 + 5 + \dots + (2n-1)]$$

$$= \frac{10(10^n - 1)}{10 - 1} + n^2$$

$$\frac{10}{9}(10^n - 1) + n^2$$

**THANKING YOU
ODM EDUCATIONAL GROUP**

SEQUENCES AND SERIES

Relation Between AM And GM

SUBJECT : MATHEMATICS

CHAPTER NUMBER:09

CLASS NUMBER :06

CHANGING YOUR TOMORROW

Sum of an Infinite G.P.

If the first term is a and common ratio is r , where $|r| < 1$, i.e $-1 < r < 1$ then sum of an infinite G.P is

$$S = \frac{a}{1-r}$$

Example:-1

Find the sum to infinity of the G.P $-\frac{5}{4}, \frac{5}{16}, \frac{-5}{64}, \dots$

Solution:-

$$\text{Here, } a = \frac{-5}{4}, r = \frac{-1}{4}$$

$$\text{So, } S = \frac{a}{1-r}$$

$$\begin{aligned} &= \frac{\frac{5}{4}}{1 - \left(\frac{-1}{4}\right)} = \frac{\frac{5}{4}}{1 + \frac{1}{4}} \\ &= -1 \end{aligned}$$

Geometric Mean

Let a and b two given numbers, then the numbers $G_1, G_2, G_3, \dots, G_n$ are n geometric means of a and b, if the sequence $a, G_1, G_2, \dots, G_n, b$ is a G.P

Let r is the common ratio

Here, $(n+2)^{\text{th}}$ term = b

$$\Rightarrow ar^{n+2-1} = b$$

$$\Rightarrow r^{n+1} = \frac{b}{a}$$

$$\Rightarrow r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

$$\text{Now, } G_1 = a r = a \left(\frac{b}{a} \right)^{\frac{1}{n+1}}$$

$$G_2 = ar^2 = a \left(\frac{b}{a} \right)^{\frac{2}{n+1}}$$

$$G_n = ar^n = a \left(\frac{b}{a} \right)^{\frac{n}{n+1}}$$

If 3 number a, G, b are in G.P then $\frac{G}{a} = \frac{b}{G}$

$$\Rightarrow G^2 = ab$$

$$\Rightarrow G = \sqrt{ab}$$

Example:- 2

Insert five numbers between 576 and 9 so that the resulting sequence is a GP.

Solution:-

Here, $a = 576$, $b = 9$, $n = 5$

$$r = \left(\frac{b}{a} \right)^{1/(n-1)}$$

$$= \left(\frac{9}{576} \right)^{1/6} = \left(\frac{1}{64} \right)^{1/6} = \frac{1}{2}$$

$$G_1 = ar = 576 \times \frac{1}{2} = 288$$

$$G_2 = G_1 r = 288 \times \frac{1}{2} = 144$$

$$G_3 = G_2 r = 144 \times \frac{1}{2} = 72$$

$$G_4 = G_3 r = 72 \times \frac{1}{2} = 36$$

$$G_5 = G_4 r = 36 \times \frac{1}{2} = 18$$

Example:- 3

Insert five numbers between 16 and $\frac{1}{4}$ so that the resulting sequence is a GP.

Solution:- Here, $a = 16$, $b = \frac{1}{4}$, $n = 5$

$$r = \left(\frac{b}{a}\right)^{1/n+1} = \left(\frac{1/4}{16}\right)^{1/5+1} = \left(\frac{1}{64}\right)^{1/6} = \frac{1}{2}$$

$$G_1 = ar = 16 \times \frac{1}{2} = 8$$

$$G_2 = G_1 r = 8 \times \frac{1}{2} = 4$$

$$G_3 = G_2 r = 4 \times \frac{1}{2} = 2$$

$$G_4 = G_3 r = 2 \times \frac{1}{2} = 1$$

$$G_5 = G_4 \times 5 = 1 \times \frac{1}{2} = \frac{1}{2}$$

Relation between A.M and G.M

(a) If A and G are respectively AM and GM between two positive number a and b then
 $A > G$.

Here $A = \frac{a+b}{2}$ and $G = \sqrt{ab}$

$$\text{Now, } A - G = \frac{a+b}{2} - \sqrt{ab}$$

$$= \frac{a+b-2\sqrt{ab}}{2}$$

$$= \frac{(\sqrt{a}-\sqrt{b})^2}{2} > 0$$

$$\Rightarrow A > G$$

(b) If A and G are respectively AM and GM between two positive quantity, a and b then the quadratic equation having a and b as the roots is $x^2 - 2Ax + G^2 = 0$

(c) if A and G is the AM and GM between two positive numbers, then the numbers are

$$A \pm \sqrt{A^2 - G^2}$$

Example:-4

If AM and GM of two positive number a and b are 10 and 8 respectively. Find the numbers.

Solution:- Here A = 10, G = 8

If a and b are two numbers, then

$$a = A + \sqrt{A^2 - G^2}$$

$$= 10 + \sqrt{100 - 64}$$

$$= 10 + 6 = 16$$

$$b = A - \sqrt{A^2 - G^2}$$

$$= 10 - 6 = 4$$

Hence, a = 16, b = 4

**THANKING YOU
ODM EDUCATIONAL GROUP**

SEQUENCES AND SERIES

Sum To n Terms Of Special Series

SUBJECT : MATHEMATICS

CHAPTER NUMBER:09

CLASS NUMBER :07

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Some Special Series

(a) Sum of 1st n natural number

$$S_n = 1 + 2 + 3 + \dots + n$$

$$= \sum_{k=1}^n K = \frac{n}{2} (1 + n) = \frac{n(n+1)}{2}$$

(b) Sum of the squares of first n natural numbers

$$S_n = 1^2 + 2^2 + 3^2 + \dots + n^2$$

$$= \sum_{k=1}^n K^2 = \frac{n(n+1)(2n+1)}{6}$$

Consider, $(K+1)^3 - K^3$

$$= K^3 + 3K^2 + 3K + 1 - K^3$$

$$= 3K^2 + 3K + 1$$

Putting $K = 1$, $2^3 - 1^3 = 3 \cdot 1^2 + 3 \cdot 1 + 1$

$$K = 2, 3^3 - 2^3 = 3 \cdot 2^2 + 3 \cdot 2 + 1$$

$$K = 3, 4^3 - 3^3 = 3 \cdot 3^2 + 3 \cdot 3 + 1$$

$$K = n, (n+1)^3 - n^3 = 3 \cdot n^2 + 3 \cdot n + 1$$

Adding these by term wise

$$(n+1)^3 - 1^3 = 3(1^2 + 2^2 + \dots + n^2) + 3(1 + 2 + \dots + n) + n$$

$$\Rightarrow n^3 + 3n^2 + 3n + 1 - 1 = 3S_n + 3 \frac{n(n+1)}{2} + n$$

$$\Rightarrow 3S_n = n^3 + 3n^2 + 3n - 3 \frac{n(n+1)}{2} - n$$

$$= n^3 + 3n^2 + 3n - \frac{3n^2}{2} - \frac{3n}{2} - n$$

$$= \frac{2n^3 + 6n^2 + 4n - 3n^2 - 3n}{2}$$

$$= \frac{2n^3 + 3n^2 + n}{2}$$

$$= \frac{n(2n^2 + 3n + 1)}{2} \Rightarrow S_n = \frac{n(n+1)(2n+1)}{6}$$

(c) Sum of cubes of first n natural numbers

$$S_n = \sum_{K=1}^n K^3$$

$$= 1^3 + 2^3 + 3^3 + \dots + n^3$$

$$= \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$

(d) $4n^3 + 6n^2 + 2n$

Here, $a_n = 4n^3 + 6n^2 + 2n$

$$S_n = \sum_{K=1}^n K$$

$$= \sum_{K=1}^n (4K^3 + 6K^2 + 2K)$$

$$= 4 \sum_{K=1}^n K^3 + 6 \sum_{K=1}^n K^2 + 2 \sum_{K=1}^n K$$

$$= 4 \left[\frac{n(n+1)}{2} \right]^2 + 6 \frac{n(n+1)(2n+1)}{6} + 2 \frac{n(n+1)}{2}$$

$$= n^2(n+1)^2 + n(n+1)(2n+1) + n(n+1)$$

$$= n(n+1)[n(n+1) + 2n + 1 + 1]$$

$$= n(n+1)[n^2 + n + 2n + 2]$$

$$= (n^2 + n)[n^2 + 3n + 2]$$

$$= n(n+1)(n+1)(n+2)$$

$$= n(n+1)^2(n+2)$$

Example:-1

Find the sum of the series $(1 \times 2 \times 3) + (3 \times 4 \times 5) + \dots \dots$ to n terms

Solution:-

Here n th term, $a_n = n(n+1)(n+2)$

$$= (n^2 + n)(n+2)$$

$$= n^3 + 3n^2 + 2n$$

$$\Rightarrow S_n = \sum_{K=1}^n a_r = \sum_{K=1}^n (K^3 + 3K^2 + 2K)$$

$$= \frac{3 \cdot n(n+1)(2n+1)}{6} + \left[\frac{n(n+1)}{2} \right]^2 + \frac{2 \cdot n(n+1)}{2}$$

$$= \frac{n(n+1)(2n+1)}{2} + \frac{n^2(n+1)^2}{4} + n(n+1)$$

$$= n(n+1) \left[\frac{2n+1}{2} + \frac{n(n+1)}{4} + 1 \right]$$

$$= n(n+1) \left[\frac{4n+2+n^2+n+4}{4} \right]$$

$$= \frac{n(n+1)(4n+2+n^2+n+4)}{4}$$

$$= \frac{n(n+1)(n^2+5n+6)}{4}$$

$$= \frac{n(n+1)(n+2)(n+3)}{4}$$

Example:-2

Find the sum of the series $3.8 + 6.11 + 9.14 + \dots$ to n terms

Solution:-

Here, a_n = n th term of $(3.8 + 6.11 + 9.14 + \dots)$

$$= 3n(3n+5) = 9n^2 + 15n$$

$$\Rightarrow S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (9k^2 + 15k)$$

$$= \frac{9n(n+1)(2n+1)}{6} + \frac{15n(n+1)}{2}$$

$$= \frac{3n(n+1)(2n+1)}{2} + \frac{15n(n+1)}{2}$$

$$= \frac{3n(n+1)}{2}[2n+1+5]$$

$$= \frac{3n(n+1)}{2}(2n+6)$$

$$= 3n(n+1)(n+3)$$

Example:-3

Find the sum of n terms of the series $5+11+19+29+41+\dots\dots\dots$ to n term

Solution:-

Let $S_n = 5+11+19+29+41+\dots\dots\dots$

$$\Rightarrow S_n = 5+11+19+29+41+\dots\dots\dots+a_{n-1}+a_n$$

$$\text{Also } S_n = 5+11+19+29+41+\dots\dots\dots+a_{n-2}+a_{n-1}+a_n$$

On subtraction, we get

$$0 = 5+6+8+10+12+\dots\dots\dots+(a_n - a_{n-1}) - a_n$$

$$\Rightarrow a_n = 5 + [6+8+10+12+\dots\dots\dots+(n-1) \text{ terms}]$$

$$\Rightarrow a_n = 5 + \frac{n-1}{2} [2 \times 6 + (n-10-1)2]$$

$$= 5 + \frac{n-1}{2} [12 + 2n - 4]$$

$$= 5 + \frac{n-1}{2} [8 + 2n]$$

$$= 5 + (n-1)(n+4)$$

$$= n^2 + 3n + 1$$

$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (k^2 + 3k + 1)$$

$$= \sum_{k=1}^n k^2 + \sum_{k=1}^n 3k + \sum_{k=1}^n 1$$

$$= \frac{n(n+1)(2n+1)}{6} + 3 \cdot \frac{n(n+1)}{2} + n$$

$$= n \left[\frac{(n+1)(2n+1)}{6} + \frac{3(n+1)}{2} + 1 \right]$$

$$= n \left[\frac{(n+1)(2n+1) + 9(n+1) + 6}{6} \right]$$

$$= \frac{n}{6} [(n+1)(2n+1) + 9(n+1) + 6]$$

$$= \frac{n}{6} (2n^2 + 12n + 16)$$

$$= \frac{n}{3} (n^2 + 6n + 8)$$

$$= \frac{n}{3} (n+4)(n+2)$$

**THANKING YOU
ODM EDUCATIONAL GROUP**