
 [STRING] | COMPUTER SCIENCE| STUDY NOTES

ODM Educational Group Page 1

String Manipulation
STUDY NOTE

Period-01

Learning Outcomes

• An in-depth understanding string.

• Introduce the fundamentals of Mutable & Immutable Types.

• Working with different types of Operators.

• Concepts of sequence

• Concept of string functions & methods

• Debugging Concepts

Introduction:-

 You all have basic knowledge about Python strings. You know that Python strings are

characters enclosed in quotes of any type – single quotation marks, double quotation marks and

triple quotation marks. You have also learnt things like – an empty string is a string that has 0

characters (i.e., it is just a pir of quotation marks) and that Python strings are immutable. You

have used strings in earlier chapters to store text type of data.

 You know by now that strings are sequence of characters, where each character has a unique

position –id/index. The indexes of a string begin from 0 to (length – 1) in forward direction and -

1,-2,-3,, -length in backward direction.

 In this chapter, you are going to learn about many more string manipulation techniques

offered by Python like operators, methods etc.

TRAVERSING A STRING

 You know that individual characters of a string are accessible through in unique index of each

character. Using the indexes, you can traverse a string character by character. Traversing refers

to iterating through the elements of a string, one character at a time. You are already traversed

through strings, though unknowingly, when we talked about sequences along with for loops. To

traverse through a string, you can write a loop like :

Jai Gurudev
Typewritten text
CLASS-XI

 [STRING] | COMPUTER SCIENCE| STUDY NOTES

ODM Educational Group Page 2

Fsdfdasffdsaf

 The information that you have learnt till now is sufficient to create wonderful programs to

manipulate strings. Consider the following programs that use the Python string indexing to

display strings in multiple ways.

 Program to read a string and display it in reverse order – display one character per line. Do

not create a reverse string, just display in reverse order.

string1 = input(“Enter a string:”)

print (“The”, string1, “in reverse order is”

length = len(string1)

for a in range (-1, (-length-1),-1) :

 print (string1[a])

Sample run of above program is :

Enter a string : python

The python in reverse order is :

n

o

h

t

y

p

 Program to read a string and display it in the form :

 First character last character

 Second character second last character

 : :

For example, string “try” should print as :

 t y

 r r

 y t

 string1 = input (“Enter a string : “)

 length = len(string)

 i = 0

 [STRING] | COMPUTER SCIENCE| STUDY NOTES

ODM Educational Group Page 3

 for a in range(-1, (-length-1), -1 :

 print(string1[1], “\t”, string1[a])

 i +=1

Sample run of above program is :

Enter a string : Python

p n

y o

t h

h t

o y

n p

STRING OPERATIONS

 In this section, you’ll be learning to work with various operators that can be used to

manipulate strings in multiple ways. We’ll be talking about basic operators + and*,

membership operators in and not in and comparisons operators (all relational operators) for

strings.

 Basic Operators

The two basic operators of strings are : + and *. You have use these operators as arithmetic

operators before for addition and multiplication respectively. But when used with strings. +

operator performs concatenation rather than addition and * operator performs replication

rather than multiplication. Let us see, how.

Also, before we proceed, recall that strings are immutable i.e., un-modifiable. Thus every

time you perform something on a string that changes it, Python will internally create a new

string ratter than modifying the old string in place.

 String Concatenation Operator +

 The + operator creates a new string by joining the two operand strings, e.g.,

 “tea” + “pot”

 Will result into

 DDD

 Consider some more examples :

 [STRING] | COMPUTER SCIENCE| STUDY NOTES

ODM Educational Group Page 4

 Expression Will result into

 ‘I’ +’I’ ‘11’

 “a” + “0” ‘a0’

 ‘123’ + ‘abc’ ‘123abc’

 Let us see how concatenation takes place internally. Python creates a new string the memory

by storing the individual characters of first string operand followed by the individual

characters of second string operand. (see below).

 Original strings are not modified as strings are immutable ; new strings can be created but

existing strings cannot be modified.

Caution !

 Another important thing that you need to know about + operator is that this operator can

work with numbers and strings separately for addition and concatenation respectively, but in

the same expression, you cannot combine numbers and strings as operands with a +

operator.

 For example,

 2 + 3 = 5 # addition – VALID

 ‘2’ + ‘3’ = ‘23’ # concatenation – VALID

 But the expression

 ‘2’ + 3

 Is invalid. It will produce an error like :

 >>> ‘2’ + 3

 Traceback (most recent call last) :

 File “<pyshell#2>”, line 1, in <module>

 ‘2’ + 3

 Thus we can summarize + operator as follows :

Table : Working of Python + Operator :

 [STRING] | COMPUTER SCIENCE| STUDY NOTES

ODM Educational Group Page 5

Operands' data type Operation performed by Example

numbers addition 9 9 18

string concatenation "9" "9" "99"



 

 

Period-02

String Replication Operator *

 The *operator when used with numbers (i.e., when both operands are numbers), it performs

multiplication and returns the product of the two number operands.

 To use a * operator with strings, you need two types of operands – a string and a number,

i.e., as number * string or string * number.

 Where string operand tells the string to be replicated and number operand tells the number

of times, it is to be repeated; Python will create a new string that is a number of repetitions of

the string operand.

 For example,

 3 * “go!”

 Will return

 ‘go!go!go!’

 Consider some more examples :

 Expression will result into

 “abc” * 2 “abcabc”

 5*”@” “@@@@@”

 “:-“ * 4 “:-:-:-:-“

 “1” * 2 “11”

Caution!

 Another important thing that you need to know about* operator is that this operator can

work with numbers as both operands for multiplication and with a string and a number for

replication respectively, but in the same expression. You cannot have string as both the

operands with a* operator.

 [STRING] | COMPUTER SCIENCE| STUDY NOTES

ODM Educational Group Page 6

 For example.

 2 * 3 = 6 # multiplication – VALID

 “2”*3 = “222” #replication – VALID

 But the expression

 “2” * “3”

 Is invalid. It will produce an error like :

 >>>”2”*”3”

 Traceback(most recent call last) :

 File “<pyshell#0>”, line 1, in <module>

 “2”*”3”

 TypeError : can’t multiply sequence by non-int of type ‘str’

 Thus we an summarize + operator as follows :

Table 2.2 : Working of Python * operator

