0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

CLASS-XI
Study Notes

Data Handling

Period-1

Introduction:

Learning Outcomes

. An in-depth understanding Data Types.

. Introduce the fundamentals of Mutable & Immutable Types.
. Working with different types of Operators.

* Concepts of Expression

* Concept of Random Module

C Debugging Concepts
Introduction

In any language, there are some fundamentals you need to know before you can write even the
most elementary programs. This chapter introduces some such fundamentals: data types,
variables, operators and expressions in Python.

Python provides a predefined set of data types for handling the data it uses. Data
can be stored in any of these data types. This chapter is going to discuss various types of data that
you can store in Python. Of course, a program also needs a means to identify stored data.

DATA TYPES:

Data can be of many types e.g., character, integer, real, string etc. Anything enclosed in
guotes represents string data in Python. Numbers without fractions represent integer data.
Numbers with fractions represent real data and true and false represent Boolean data. Since the
data to be dealt with are of many types, a programming language must provide ways and facilities
to handle all types of data.

Python offers following built-in core data types: (i) Numbers (ii) String (iii) List (iv) Tuple (v)
Dictionary.
Numbers:

ODM Educational Group Page 1

Jai Gurudev
Typewritten text
CLASS-XI

Jai Gurudev
Typewritten text
Study Notes

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

As it is clear by the name the Number data types are used to store numeric values in Python. The
Numbers in Python have following core data types:
(i) Integers

= Integers (signed)
= Booleans
(ii) Numbers

(iii) Complex Numbers

Integers:

Integers are whole numbers such as 5, 39, 1917, 0 etc. They have no fractional parts.
Integers are represented in Python by numeric values with no decimal point. Integers can be
positive or negative, e.g., + 12, - 15, 3000 (missing + or- symbol means it is positive number).
There are two types of integers in Python.

7/

** Integers (signed)
¢ Booleans
Integers (signed).

It is the normal integerl representation of whole numbers. Integers in Python 3.x
can be of any length, it is only limited by the memory available. Unlike other languages, Python
3.x provides single data type (int) to store any integer, whether big or small.

It is signed representation, i.e., the integers can be positive as well as negative,
(ii) Booleans.

These represent the truth values False and True. The Boolean type is a subtype of

plain integers, and Boolean values False and True behave like the values O and 1,

respectively. To get the Boolean equivalent of 0 or 1, you can type bool(0) or bool (1), Python will

return False or True respectively.

ODM Educational Group Page 2

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES
e T [al: - e)
v .S. : | 3 . - -
in {3] +791 False'
st[5]: False : ’ o
Ve ’ 1 f Ln -le-l . q I rue
In (6] t[10]): ‘True’

t{6]: True

However, when you convert Boolean values False and True to a string, the strings 'False' or
'"True' are returned, respectively. The str() function converts a value to string. See figure above
(right side).

The str() function converts a value to string. The two objects representing the values False and

True (not false or true) are the only Boolean objects in Python.

Floating Point Numbers:

A number having fractional part is a floating-point number. For example, 3.14159is a
floating-point number. The decimal point signals that it is a floating-point number, not an integer.
The number 12 is an integer, but 12.0 is a floating-point number.

As we already know that fractional numbers can be written in two forms:

(i) Fractional Form (Normal Decimal Notation) e.g., 3500.75, 0.00005, 147.9101 etc.
(ii) Exponent Notation e.g., 3.5007E03, O.5E-04, 1.479101E02 etc

Floating-point numbers have two advantages over integers:

R/

% They can represent values between the integers.

¢+ Operations are usually slower than integer operations they can represent a much greater
range of values. But floating-point numbers suffer from one disadvantage also:

¢ Floating-point operations are usually slower than integer operations.

In Python, floating point numbers represent machine-level double precision floating point

numbers (15 digit precision), The range of these numbers is limited by underlying machine

architecture subject to available (virtual Memory).

In Python, the Floating point numbers have precision of 15 digits(double-precision).

ODM Educational Group Page 3

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Complex Numbers:

Python is a versatile language that offers you a numeric type to represent Complex
Numbers also. Complex Numbers? Hey, don’t you know about Complex numbers? Uhh, | see. You
are going to study about Complex numbers in class XI Mathematics book. Well, if you don’t know
anything about complex numbers, then for you to get started, | am giving below brief introduction
of Complex numbers and then we shall talk about Python’s representation of Complex numbers.

Mathematically, a complex number is a number of the form A + Bi where | is the imaginary

number, equal to the square root of -1 i.e., \/—_1

A complex number is made up of both real and imaginary components. In complex
number A +Bi, A and B are real numbers and i is imaginary. If we have a complex number z, where
z=a+bi then a would be the real component and b would represent the imaginary
component of z, e.g., real component of z=4 + 3iis 4 and the imaginary component would be 3.
Complex Numbers in Python:

Python represents complex numbers in the form A + B j. That is to represent imaginary number,
Python uses f (or J) in place of traditional i. So in Python j=+/—1. Consider the following examples

where a and b are storing two complex number in Python:
a=0+3.1j
b=1.5+2j

The above complex number a has real component as 0 and imaginary component as 3.1; in
complex number b, the real part is 1.5 and imaginary part is 2. When you display complex
numbers, Python displays complex numbers in parentheses when they have a nonzero real part
as shown in following exmples.

>>>c=0+4.5j

>>>d=1.1+3.4j

>>>C

4.5]

>>>d

(1.1+3.4])

] See, a complex number with non-
>>>print(c) zero real part is displayed with
parentheses around it. But

e — | poparentheses around complex e ———————————————
ODM Educational Group number with real part as zero(0). Page 4

0DM-=

EDUCATIONAL GROU? [DATAHANDLING] RS A It A o=
4.5j
>>>print(d) /
(1.1+3.4j)

Unlike Python's other numeric types, complex numbers are a composite quantity made of two
parts: the real part and the imaginary part, both of which are represented internally as float
values (floating point numbers).

You can retrieve the two components using attribute references. For a complex number z:

» z.real gives the real part.
» z.imag gives the imaginary part as a float, not as complex value.
For example,

>>>7=(1+2.56j)+(--4-3.56j)

>>>a
(-3-1j)
it will display real part of
>>>z.real < complex number z
-3.0

. it will display imaginary
>>>2.1Imag < part of complex number z

-1.0

The range of numbers represented through Python's numeric data types is given below.

1000 + 1000 + 800 + 400 + 5000 + 1000 + 19000 + 13500 + 11000 + 13000 + 800 + 1500 + 12000

Table 3.1: The Range of Python Numbers.

Datatype Range
Integers an unlimited range, subject to available (virtual) memory only
Booleans two values True (1), False (0)

)) an unlimited range, subject to available (virtual) memory on
Floating point numbers)]]
underlying machine architecture.

Same as floating point numbers because the real and imaginary
Complex numbers
parts are represented as floats

Strings

ODM Educational Group Page 5

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

You already know about strings (as data) in Python. In this section, we shall be talking about
Python's datatype string. A string datatype lets you hold string data, i.e., any number of valid
characters into a set of quotation marks.

In Python 3.x, each character stored in a string® is a Unicode character. Or in other words, all
strings in Python 3.x are sequences of pure Unicode characters. Unicode is a system designed to
represent every character from every language.

A string can hold any type of known characters i.e., letters, numbers and special characters of any

known scripted language.

Following are all legal strings in Python:
A Python string is a sequence of characters and each character can be individually accessed using

its index. Let us understand this.

Let us first study the internal structure or composition of Python strings as it will form the basis of
all the learning of various string manipulation concepts. Strings in Python are stored as individual
characters in contiguous location, with two-way index for each location.

The individual elements of a string are the characters contained in it (stored in contiguous
memory locations) and as mentioned the characters of a string are given two-way index for each
location.

Let us understand this with the help of an illustration as given in Fig. 3.1.

' name[0] = 'P" = namel-6] |
name[1] =Y = name[-5] |

! name[2] = "T = name[-4] |
"= name[3] = "H" = name[-3] ;
| namel4] = O = name[-2]
namel[5] = ‘N’ = name[-1]

 Forwardindexing > 4 » 3 4 5

name

6.5 4.3 -2 -1 \ ABackwardwi‘ndexingé

Figure 3.1 Structure of a Python String.
From Fig. 3.1 you can infer that:

» Strings in Python are stored by storing each character separately in contiguous locations.

ODM Educational Group Page 6

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

» The characters of the strings are given two-way indices:
= 01,2,... in the forward direction and
= -1,-2,-3, ... in the backward direction.
Thus, you can access any character as <stringname>[<index] e.g., to access the first character of
string name shown in Fig. 3.1, you'll write name[0], because the index of first character is 0. You
may also write name[-6] for the above example i.e., when string name is storing "PYTHON".

Let us consider another string, say subject="Computers'. It will be stored as:

0(1(2(3(4|5|6|7]8
subject [C|o | m|p|u|t|e|r]|s
9|-8|-7|-6|-5|-4]-3[-2]-1

Thus,
subject[0]="C' subject[2]='m' subject[6]="e’
subject[-1]="s' subject[-7]='m' subject[-9]='C'

Since length of string variable can be determined using function len(<string>), we can say that:
» first character of the string is at index 0 or —length

» second character of the string is at index 1 or —(length-1)

» second last character of the string is at index (length -2) or -2
» last character of the string is at index (length -1) or -1
In a string, say name, of length In, the valid indices are 0, 1, 2, In-1. That means, if you try to

give something like:

>>>name|ln]
Python will return an error like:
Traceback (most recent call last):
File '<pyshell#40>", linel, in <module>
name[ln]

IndexError: string index out of range

ODM Educational Group Page 7

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

The reason is obvious that in string there is no index equal to the length of the string, thus
accessing an element like this causes an error.

Also, another thing that you must know is that you cannot change the individual letters of a string
in place by assignment because strings are immutable and hence item assignment is not
supported, i.e.,

name='hello'

individual letter assignment
BN
name([0]="p' «——— not allowed in Python

will cause an error like:
Traceback (most recent call last):
File "<pyshell#3>", linel, inkmodule>
name[0]="p’
TypeError: 'str' object does not support item assignment
However, you can assign to a string another string or an expression that returns a string using
assignment, e.g., following statement is valid:

name="'hello'

Strings can be assigned
_ | —
name=new expressiosn that give strings.

Lists and Tuples

The lists and tuples are Python's compound datatypes. We have taken them together in one
section because they are basically the same types with one difference. Lists can be changed/
modified (i.e., mutable) but tuples cannot be changed or modified (i.e., immutable). Let us talk
about these two Python types one by one.
Lists

A List in Python represents a list of comma-separated values of any datatype between square
brackets e.g., following are some lists:

[1,2,3,4,5]

['a','e",'I','d', "u']

['Neha', 102, 79.5]

Like any other value, you can assign a list to a variable e.g.,

>>>a=[1, 2, 3, 4, 5] #Statementl

ODM Educational Group Page 8

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

>>>3
[1,2,3,4,5]
>>>print(a)
[1,2,3,4,5]

To chage first value in a list namely a (given above), you may write
>>>3[0]=10 #change 3rd item
>>>3
[10, 2, 3, 4, 5]
To change 3rd item, you may write
>>>3[2]=30 #Change 3rd item
>>>3

(10, 2, 30, 4, 5]
You guessed it right; the values internally are numbered from 0 (zero) onwards i.e., first item of

the list is internally numbered as 0, second item of the list as 1, 3rd item as 2 and so on.
We are not going further in list discussion here. Lists shall be discussed in details in a later chapter.
Tuples
You can think of Tuples (pronounced as tu-pp-le, thyming with couple) as those lists which cannot
be changed i.e., are not modifiable. Tuples are represented as list of comma-separated values of
any date type within parentheses, e.g., following are some tuples:

p=(1,2,3,4,5)

q=(2, 4, 6, 8)

r: la , el' lII, Iol' |ul)
h=(7,8,9,'A','B','C')
Tuples shall be discussed in details in a later chapter.

Dictionary

Dictionary datatype is another feature in Python's hat. The dictionary is an unordered set of
comma-separated key:value pairs, within {}, with the requirement that within a dictionary, no two
keys can be the same (i.e., there are unique keys within a dictionary). For instance, following are
some dictionaries:

{a':1,'e':2,'i":3,'0': 4, 'u': 5}

ODM Educational Group Page 9

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

>>>vowels={'a':1,'e':2,'i":3,'0': 4, 'u' : 5}

>>>vowels['a'] Here 'a’, 'e", 'I', 'o" and 'u’ are the keys of dictionary
1 vowels; 1, 2, 3, 4, 5 are values for these keys
>>>vowels['u']

Specifying key inside [] after dictionary name gives the
5 corresponding value from the key : value pair inside

Dictionaries shall be covered in details in a later chapter.

Following figure summarizes the core datatypes of Python.

Core Datatypes

Nur’qbers None Sequences Mappings

Integer Floating Point Complex String Tuple List Dictionary

Boolean

MUTABLE AND IMMUTABLE TYPES

The Python data objects can be broadly categorized into two-mutuable and immutable types, in

simple words changeable or modifiable and non-modifiable types.

1. Immutable types:

The immutable types are those that can never change their value in place. In Python, the following
types are immutable: integers, floating point numbers, Booleans, strings, tupes.
Let us understand the concept of immutable types. In order to understand this, consider the code

below:

ODM Educational Group Page 10

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

Immutable Types

» Integers

Floating point numbers

» Booleans
» Strings
» Tuples

Sample code 3.1

p=5
a=p
r=5
#will give 5,5, 5
p=10
r=7
q=r
After reading the above code, you can say that values of integer variables p, g, r could be changed

effortlessly. Since p, g, r are integer types, you may think that integer types can change values.

But hold: It is not the case, Let's see how:

You already know that in Python, variable-names are just the references to value-objects i.e., data
values. The variable-names do not store values themselves i.e., they are not storage containers.
Recall section 2.5.1 where we briefly talked about it.

Now consider the Sample code 3.1 given above. Internally, how Python processes these
assignments is explained in Fig. 3.2. Carefully go through figure 3.2 on the next page and then read
the following lines.

So although it appears that the value of variable p/q/r is changing; values are not changing "in
place” the fact is that the variable-names are instead made to refer to new immutable integer

object. (Changing in place means modifying the same value in same memory location).

ODM Educational Group Page 11

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES
> Initially these three statements are executed:
p=5

All variables having same value reference the same value
aq=p ——— objecti.e. p, g, r will all reference same integer objects.

Each integer
value is an
immutable
object

You can check/confirm it yourself using id(). The id() returns the memory address to which a

variable is referencing.

In [46]! o=

[0

In [41]: g = p

In 42f: = 5 "
o G B Notice the id() is returning |

same memory address for |
value 5, p, q,i - which |

| means all these are ‘
. Lreferencing the same object.

In [43]: id(5)
Out[43]: 1457662208

In [44]: id(p)
Out[44]: 1457662208

In [45]: id(
Out[45]: 145

In [45]1 id(P}
Qut[46]: 1457662208

Please note, memory addresses depend on your operating system and will vary in different
sessions.
> When the next set of statements execute, i.e,
p=10
r=7

ODM Educational Group Page 12

0DM-=

EDUCATIONAL GROUP

— anging vour Tomorove sl

[DATA HANDLING] | COMPUTER SC.| STUDY NOTES

q=r

the these variable names are made to point to different integer objects. That is, now their

memory addresses that they reference will change. The original memory address of p that was

having value 5 will be the same with the same value i.e., 5 but p will no longer reference it. Same

is for other variables.

Let us check their ids

Figure 3.3

In [47]:
In [48]:
In [49]:

In [50]:
Out[50]:

In [51]:
OQut[51]:

In [52]:
Out([52]:

In [53]:
Out[53]:

In [54]:
Out[54]:

In [55]:
Out[55]:

p=10

r=7

id(10)

1457662288

id(p)

1457662288

id(7)

1457662240 The value 5 is at the same

id(q)

1457662240

id(r)

1457662249

id(5)

1457662208

Notice, this time with change in
value, the reference memory
address of variables p , g and
r have changed.

A address

» Now if you assign 5 to any other variable. Let us see what happens.

ODM Educational Group

Page 13

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Now variable thas reference memory

In [S6]: t =5 address same as initial reference memory

address of variable p when it has value 5.
Compare listings given above .

In [57]: id(t)
Out[57]: 1457662208

Thus, it is clear that variable names are stored as references to a value-object. Each time you
change the value, the variable's reference memory address changes.

Variables (of certain types) are NOT LIKE storage containers i.e., with fixed memory address where
value changes every time. Hence they are IMMUTABLE.

The objects of following value types are immutable in Python:

> Integer
Booleans
> Tuples
> Floating point number

Y

Strings

Mutable types
The mutable types are those whose values can be changed in place. Only three types are mutable
in Python. These are: lists, dictionaries and sets.
To change a member of a list, you may write:
chk=[2, 4, 6]
chk[1]=40
It will make the list namely Chk as [2, 40, 6].

In [6@]: Chk = [2, 4, 6] 1

See, even after changing a value in
the list Chk, its reference memory
address has remained same. That
means the change has taken in place
- the lists are mutable

In [61]: id(Chk)
Out[61]: 150195536 w2,

g

In [62]: Chk[1] = 4@

‘O
In [63]: id{Chk) y Q
Out[63]: 150195536

Lists and Dictionaries shall be covered later in this book.

ODM Educational Group Page 14

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Variable Internals

Python is an object oriented language. Python calls every entity that stores any values or any type
of data as an object.

An object is an entity that has certain properties and that exhibit a certain type of behavior, e.g.,
integer values are objects- they hold whole numbers only and they have infinite precision
(properties); they support all arithmetic operations (behavior).

So all data or values are referred to as object in Python. Similarly, we can say that a variable is also
an object that refers to a value.

Every Python object has three key attributes associated to it:

(i) The type of an object.

The type of an object determines the operations that can be performed on the object. Built-in
function type() returns the type of an object.

Consider this:

>>>a3=4
>>>tye(4) :) ——
Type of integer value 4 is returned int i.e., integer
<class'int'>
>>>type(a)
Type of variable a is also int i.e. integer because a is currently referring to an integer
<class'int'> +— |

(ii) The value of an object

It is the data-item contained in the object. For a literal, the value is the literal itself and for a
variable the value is the data-item it (the variable) is currently referencing. Using print statement
you can display vaoue of an object. For example,

>>>a=4

>>>print(4)

value of integer literal 4 is 4

4 — |

>>>print(4)

>>>print(a)

value of variable a is 4 as it is currently referencing integer value

4
(iii) The id of an object

ODM Educational Group Page 15

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

The id of an object is generally the memory location of the object. Although id is implementation
dependent but in most implementations it returns the memory location of the object. Build-in
function id() returns the id of an object, e.g.,

>>>id(4)

Object 4 is internally stored at location 30899132

30899132 «— |

>>>3=4

>>>id (a) Variable a is current referencing location 30899132 (Notice same as id(4). Recall that
variable is not a storage location in Python, rather a label pointing to a value object).

30899132

The id() of a variable is same as the id() of value it is storing.
Now consider this:

Sample code 3.2

>>>id(4)

30899132 \
>>>3=4

>>>id(a)

The id's of value 4 and variable a are the same since the memory location of 4 is same
as the location to which variable a is referring to.

30899132
«— Variable b is currently having value 5, i.e. referring to integer value 5

>>>p=5

>>>id(5)

30899120

>>>id(b)

30899120

>>>b=b-1 «— |
>>>id(b)

30899132

Variable b will now refer to value 4

Now notice that the id of variable b is same as id of integer 4.

-

>>>

Thus internal change in value of variable b (from 5 to 4) of sample code 3.2 will be represented as
shown in Fig. 3.4.

ODM Educational Group Page 16

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

a=4 30899132
4
b=5
30899120
b=b-1 5

Please note that while storing complex numbers, id's are created differently, so a complex literal
say 2.4j and a complex variable say x having value 2.4j may have different id's.

DATA TYPES IN PYTHON, MUTABILITY, INTERNALS

In the Python Shell IDLE or IPython shell of Spyder IDE, type the statements as instructed.
1. Using value 12, create data-item (that contains 12 in it) of following types. Give atleast two
examples for each type of data. Check type of each of your examples using type() function,

e.g., to check the type of 3.0, you can type on Python prompt type(3.0).

(a) | Integer

(b) | Floating point number

(c) | Complex number

Period-02
OPERATORS

The operations being carried out on data, are represented by operatiors. The symbols that
trigger the operation / action on data, are called operators. The operations (specific tasks) are
represented by Operators and the objects of the operation(s) are referred to as Operands.

Python's rich set of operators comprises of these types of operators : (i) Arithmetric operators (ii)

ODM Educational Group Page 17

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Relational operators (iii) ldentity operators (iv) Logical operators (v) Bitwise operators (vi)
Membership operators.
Out of these, we shall talk about membership operators later when we talk about strings,
lists, tuples and dictionaries. (Chapter 5 onwards)
Let us discuss these operators in detail.
Arithmetic Operators
To do arithmetic, Python uses arithmetic operators. Python provides operators for basic
calculations, as given below:
+ addition
- substraction
* multiplication
/ division
// floor division
% remainder
** exponentiation
Each of these operators is a binary operator i.e., it requires two values (operands) to calculate
a final answer. Apart from these binary operators, Python provides two unary arithmetic
operators (that require one operand) also, which are unary +, and unary -.

Unary Operators
Unary +

The operators unary '+ precedes an operand. The operand (the value on which the operator
operates) of the unary + operator must have arithmetic type and the result is the value of the
argument. For example,

ifa=5 then + a means 5.

ifa=0 then + a means 0.

ifa=-4 then+ameans-4.
Unary -
The operator unary — precedes an operand. The operand of the unary — operator must have
arithmetic type and the result is the negation of its operand's value. For example:

ifa=5 then —a means -5.

ifa=0 then —a means 0O (there is no quantity known as -0)

ifa=-4 then—ameans4.

ODM Educational Group Page 18

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

This operator reverses the sign of the operand's value.

Binary Operators

Operators that act upon two operands are referred to as Binary Operators. The operands of a
binary operator are distinguished as the left or right operand. Together, the operator and its
operands constitute an expression.

1. Addition operator (+)

The arithmetic binary operator + adds values of its operands and the result is the sum of the
values of its two operands. For example,

4+20 results in 24

a+5 (wherea=2) results in 7

a+b(wherea=4,b=6 resultsin 10

For Addition operator + operands may be of number types>.

Python also offers + as a concatenation operator when used with strings, lists and tuples. This
functionality for strings will be covered in Chapter 5- String Manipulation; for lists, it will be
covered in Chapter-7- List Manipulation.

2. Subtraction operator (-)

The-operator subtracts the second operand from the first. For example,

14-3 evaluates to 11

a-b (where a=7, b=5 evaluates to 2

x-3 (where x=-1) evaluates to -4

The operands may be of number types.

3. Multiplication operator (*)

The * operator multiplies the values of its operands. For example,

3*4 evaluates to 12

b * 4 (where b=6) evaluates to 24

p * 2 (where p=-5) evaluates to -10

a * c (where a=3, c=5) evaluatesto 15

The operands may be of integer or floating point number types.

ODM Educational Group Page 19

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Python also offers * as a replication operator when used with srings. This functionality will be
covered in Chapter 5 — String Manipulation.
4. Division Opeator (/)

The / operator in Python 3.x divides its first operand by the second operand and always returns
the result as a float value, e.g.,

4/2 evaluates to 2.0
100/10 evaluates to 10.0
7/2.5 evaluates to 2.8
100/32 evaluates to 3.125
13.5/1.5 evaluates to 9.0

Please note that in older version of Python (2,x), the/operator worked differently.
5. Floor Division Operator (//)
Python also offers another division operator //, which performs the floor division. The floor
division is the division in which only the whole part of the result is given in the output and the
fractional part is truncated.
To understand this, consider the third example of division given in division operator /, i.e.,

a=15.9, b=3

a/b evaluates to 5.3.

Now if you change the division operator /, with floor division operator // in above expression, i.e.

If a=15.9, b=3’ <4—— See, the Fractional part 0.3 is discarded from the actual result 5.3

a/b will evaluate to 5.0

Consider some more examples:

100/32 evaluates to 3.0
7//3 evaluates to 2
6.5/22 evaluates to 3.0

The operands may be of number types.

6. Modulus operator (%)

ODM Educational Group Page 20

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

The % operator finds the modulus (i.e., remainder but pronounced as mo-du-lo) of its first
operand relative to the second. That is, it produces the remainder of dividing the first operand by
the second operand.
For example,
19 % 6 evaluates to 1, since 6 goes into 19 three times with a remainder 1.
Similarly,
7.2 % 3 will yield 1.2
6 % 2.5 will yield 1.0
The operands may be of number types.
Example 3.1 What will be the output produced by the following code?
A B CD=9220,421
print (A/4)
print (A//4)
print (B**c)
print (D//B)
print (A%c)
Solution: 2.3
2.0
16.0
10.0
1.2
7. Exponentiation operator (**)
The exponentiation operator ** performs exponentiation (power) calculation, i.e., it returns the
result of a number raised to a power (exponent). For example,
4**3 evaluates to 64 (43)
a**b (a=7, b=4)
evaluates to 2401 (a®i.e., 7%)

X ¥* 0.5 (x=49.0)

ODM Educational Group Page 21

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

evaluates to 7.0 (x“,i.e. X, ie., \/E)

27.009 ** 0.3
evaluates to 2.68814413570761. (27.009°3)
The operands may be of number types.
Example 3.2 Print the area of a circle of radius 3.75 metres.
Solution:
Radius = 3.75
Area = 3.14159 * Radius**2

print (Area, 'sq.metre')

Table: Binary Arithmetic Operators

Symbol Name Example | Result Comment
6+5 11
+ addition adds values of its two operands.
5+6 11
6-5 1 subtracts the value of right operand
- subtraction
5-6 -1 from left operand.
5*6 30 multiplies the values of its two
* multiplication
6*5 30 operands.

divides the value of left operand with
/ division 60/5 12 the value of right operand and returns

the result as a float value.

Modulus (pronounced 60%5 0 divides the two operands and gives the
%
mo-du-lo) or Remainder 6%5 1 remainder resulting.

divides and truncates the fractional part
// Floor division 7.2//2 3.0
from the result.

returns base raised to power exponent.
*ok Exponentiation (Power) 2.5**3 | 15.625
(2.53 here)

ODM Educational Group Page 22

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Negative Number Arithmetic in Python
Arithmetic operations are straightforward even with negative numbers, especially with non-
division operators i.e.,

-5+3 will giveyou 2

-5-3 will giveyou -8

-5*3 will giveyou -15

-5**3 will give you -125

But when it comes to division and related operators (/, //, %), mostly people get confused. Let us
see how Python evaluates these. To understand this, we recommend that you look at the
operation shown in the adjacent screenshot and then look for its working explained below, where

the result is shown shaded.

_ i 4)-7(-1.75
—3)5(-2 3)—5(-2 »
a) 6 b) -6 c) =
-1 +1 -3
0
4)-7(-2 4)-7(-2 4)7 (-2
d) -8 e) -8 f) 8
1 +1 -1
—4)7(-2
g) 8
-1

ODM Educational Group Page 23

0DM-=

EDUCATIONAL GROUP
I longing vour Tomonow M

[DATA HANDLING] | COMPUTER SC.| STUDY NOTES

IPython console ’
(3| Console 1/A

In [67]: 5// -3
Qut[67]: -2

In [68]: -5 //3
Qut[68]: -2

In [69]: -7 / 4
Out{69]: -1.75

In [70]): -7 [/ 4
Out[7@]: -2

In [71]: -7 % 4
Out[71]: 1

In [72]: 7 % -4
Out[72]: -1

In [73]): 7 // -4
out[73]: -2

Augmented Assignment Operators®

You have learnt that Python has an assignment operator = which assigns the value specified
on RHS to the variable / object on the LHS of =. Python also offers augmented assignment
arithmetic operators, which combine the impact of an arithmetic operator with an assignment
operator, e.g., if you want to add value of b to value of a and assign the result to a, then instead of

writing

a=a+b

ODM Educational Group Page 24

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

you may write
a+=b
To add value of a to value of b add assign the result to b, you may write

b +=attinstead of b=b+a

Operation | Description Comment
X+=y X=X+y Value of y added to the value of x and then result assigned to x
X-=y X = X-y Value of y subtracted from the value of x and then result assigned to x
X *=y X =x*y Value of y multiplied to value of x and then result assigned to x
X /=y X =x/y Value of y divides value of x and then result assigned to x
x//=y X =x//y Value of y does floor division to value of x and then result assigned to x
X *¥* =y X =x**y XY computed and then result assigned to x
X %=y X =x%Y Value of y divides value of x and then remainder assigned to x

These oeprators can be used anywhere that ordinary assignment is used. Augmented assignment
doesn't violate mutaability. Therefore, writing x +=y creates an entirely new object x with the
value x+y.

Relational Operators

In the term relational operator, relational refers to the relationships that values (or operands) can
have with one another. Thus, the relational operators determine the relation among different
operands. Python provides six relational operators for comparing values (thus also called
comparison oerators). If the comparison is true, the relational expression results into the Boolean
value True and to Boolean value False, if the comparison is false.

The six relational operators :

< less than, <= less than or equal to, == equal to

> greater than, >=greater than or equal to, != not equal to,
Relational operators work with nearly all types of data in Python, such as numbers, strings, lists,
tuples etc.

Relational operators work on following principles:

ODM Educational Group Page 25

[DATA HANDLING] | COMPUTER SC.| STUDY NOTES

» For numeric types, the values are compared after removing trailing zeros after decimal
point from a floating point number. For example, 4 and 4.0 will be treated as equal (after
removing trailing zeros from 4.0, it becomes equal to 4 only).

» Strings are compared on the basis of lexicographical ordering (ordering in dictionary).

= Capital letters are considered lesser than small letters, e.g., 'A’ is less than 'a'; Python'is
not equal to 'python'; 'book' is not equal to 'books'.
Lexicographical ordering is implemented via the corresponding codes or ordinal values
(e.g., ASCll code or Unicode code) of the characters being compared. That is the reason
'A'is less than 'a' because ASCII value of letter 'A' (65) is less than 'a' (97). You can check
for ordinal code of a character yourself using ord(<character>) function (e.g., ord('A')).

= For the same reason, you need to be careful about nonprinting characters like spaces.
Spaces are real characters and they have a specific code (ASCIl code 32) assigned to
them. If you are comparing two strings that appear same to you but they might
produce a different result- if they have some spaces in the beginning or end of the
string.

See screenshot on the right.

In [14] : ‘Apple’ > * Apple’
Out[14] : True
In [15] : ‘Apple’ == * Apple’ == ‘Apple

Out [15] : False

» Two lists and similarly two tuples are equal if they have same elements in the same order.
» Boolean True is equivalent to 1 (numeric one) and Boolean False to 0 (numeric zero) for
comparison purposes.
For instance, consider the following relational operations.

Given- a=3, b=13, p=3.0

ODM Educational Group Page 26

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

C='nl, d='gl, e='NI,
f='god', g='God', h='god', j='God', k='"Godhouse',
L=[1I 2I 3]' M=[21 41 6]I N=[1I 2[3]

0=(1, 2, 3), P=(2, 4, 6), Q=(1, 2, 3)

a<b will return True
c<d will return False
. Both match upto the Letter 'd' but 'God'
f<h will return False is shorter than 'Godhouse' so it comes
. irst in the dictionary.
==h will return True J Y
c==e will return False /
g==j will return True

"God"<"Godhouse" will return True

"god"<"Godhouse" will return False

a==p will return True

=M will return False

==N will return True Both match upto the Letter 'd' but 'God'
O==P will return False ;;??:;retzzi;ﬁ;ouseIso it comes
0==Q will return True
a==True wil return False
O==False will return True
1==True will return True

Table: 3.3 summarizes the action of these relational operators.

Table: Relational Operators in Python

p q pP<q | p<=q | p==q | p>q | p>=q | p!=q

3 3.0 | False | True | True | False | True | False
6 4 True | False | False | True | True | True
‘A ‘A False | True | True | False | True | False

ODM Educational Group Page 27

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

'a’ 'A'" | False | False | False | True | True | True

IMPORTANT:

While using floating-point numbers with relational operators, you should keep in mind that
floating point numbers are approximately presented in memory in binary form up to the allowed
precision (15 digit precision in case of Python). This approximation may yield unexpected results if
you are comparing floating-point numbers especially for equality (==). Numbers such as 1/3 etc.,
cannot be fully represented as binary as it yields 0.3333... etc. and to represent it in binary some
approsximation is done internally.

Consider the following code for to understand it:

EIn [18]: 0.140.1+8.1 == 8.3 Notice , Python returns False when you
éOut [18]: False | compare 0.1+ 0.1 +0.1 with 0.3.

3 See, it does not give you 0.3 when you print
jIn [19]: print(@.1+0.1+8.1) | the result of expression 0.1+ 0.1 +0.1
8.30800000000000004 (because of floating pt approximation) and
4 < this is the reason the result is False for quality

In [20]: print(©.3) comparison of 0.1+ 0.1 +0.1 and 0.3

Thus, you should avoid floating point equality comparisons as much as you can.
Relational Operators with Arithmetic Operators
The relational operators have a lower precedence than the arithmetic operators.
That means the expression

a+5>c-2 expressionl
corresponds to

(a+5) > (c-2) .. expression2
and not the following

a+(5>c)-2 .. expression3

Expression 1 means the expression 2 and not the expression3.

ODM Educational Group Page 28

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Though relational operators are easy to work with, yet while working with them, sometimes you
get unexpected results and behaviour from your program. To avoid so, | would like you to know
certain tips regarding relational operators.
A very common mistake is to use the assignment operator = in place of the relational operator ==.
Do not confuse testing the operator == with the assignment operator (=). For instance, the
expression:

value==3
tests whether valuel is equal to 3? The expression has the value True if the comparison is true
otherwise it is False. But the expression

value =3

assigns 3 to valuel; no comparison takes place.

Period-03

Identity Operators

There are two identity operators in Python is and is not. The identity operators are used to check if
both the operands reference the same object memory i.e., the identity operators compare the

memory locations of two objects and return True or False accordingly.

Operator | Usage Description

returns True if both its operands are pointing to same object (i.e., both
is aisb
referring to same memory location), returns False otherwise.

ais not | returns True if both its operands are pointing to different objects (i.e., both
is not
b referring to different memory location), returns False otherwise.

Consider the following examples:
A=10
B=10

Ais B will return True because both are referencing the memory address of value 10.

ODM Educational Group Page 29

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

You can use id() to confirm that both are referencing same memory address.

In [34]: a = 235

In [35]: b = 240

a is b returns False because a and b are
235 referring to different objects (235 and 240)

In [37]: a is b a is ¢ returns True because both a and ¢ are
Out[37]: False A referring to same object (235) :

In [36]:

€
it

In [38]: a is ¢ Theids (id())ofa, bandctellthataand c
Out[38]: True are referring to same object (their memory
addresses are same) butb is referring to a
print(id(a), id(b), id(c - different object as its memory address is
2 : different from the other two

Now if you change the value of b so that it is not referring to same integer object, then expression

ais b will return True:

Now b is also pointing to same integer

n [41]: a is b object(235) thus a is b is giving True this time.

i 4

Out[41]: True
Their ids also reflect the same i.e., alla, b
and c are referring to same memory location

IIn [42]): print(id(a), id(b), id(c))
1492124000 492124000 492124000 '

i]

| VP ————————————PE PR B L

The is not operator is opposite of the is operator. It returns True when both its operands are not
referring to same memory address.

Equality (==) and Identity (is) — Important Relation

You have seen in above given examples that when two variables are referring to same value, the
'is' operator returns True. When the 'is' operator returns True for two variables, it implicitly means
that the equality operator will also return True. That is, expression 'a' is 'b' as True means that
a==b will also be True, always, See below:

ODM Educational Group Page 30

0DM-=

EDUCAT\ONAL GROUP

EeESall i) [DATA HANDLING] | COMPUTER SC.| STUDY NOTES
In [58]: print (a, b)
235 235

But it is not always true other way round. That means there are some cases where you will find

that the two objects are having just the same value i.e., == operator returns True for them but the

'is' operator returns False.

See in the screenshots shown here.
;In [45]: sl = 'abc’

In [46]: s2 = input(“Enter & stris

f

Enter a string:abc
’ e The strings s1 and s2 although have the same

(In [47]: sl == s2 value ‘abe¢’ in them

i0ut[47]: True S
F ut[47) The == operator also returns True for 1 == s2
'In [48]: sl is s2
'Out[48]: False

'
'In [49]: s3 = ‘'abc’

« But the is operator returns False for s1 is s2

‘In [5@]: sl is s3 1
(Out[S@]: True

Similarly,

In [51]. i = 2+3.5j

Objects i and j store the same comp|ex o

Jn {52}: 3 ~ number value 2+35jin them ‘
;In [53]: i is J 7
;0ut[53} False !

2+3.53

e Butis operator returns False for iisj

Also,

ODM Educational Group Page 31

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

;,In [584]: k = 3.5

;In [55]: 1 = float(input(“Enter a value:"))
Enter a value:3.5 e The variables k and [both store float value 3.5

(k has been assigned 3.5 and | has taken this

'In [56]: k ==1 value through input() and float())

iOut[56]: True
s e But k ==1returns True and k is | returns False

In [57]: k is 1
(Out[57]: False

The reason behind this behaviour is that there are a few cases where Python creates two different
objects that both store the same value. These are:

» input of strings from the console;

» write integers literals with many digits (very big integers);

» writing floating-point and complex literals.

Following figure illustrates one of the above given screenshots.

i
"8
3
o
c
+
~
m
3
[ndd
[
2
o
)
[ad
<
oo
>
]
~

1In [46]: s2

|Enter a string:abc ., k{
N L]

i frae, ! s3

{In [47]: s1 == s2 '....

'Out[47]: True tag '1'7

ok SRR
! L]
'In [48]: sl is s2 JRRN - = '~..) abe
‘Out[48]: False T, L =
! s ; 2 1345724

]
'In [49]: s3 = ‘abc' e**

zIn [5@]: sl is s3
'Out[5@]: True

Most of the times we just need to check whether the two objects refer to the same value or not-
in this case the equality operator (==) is sufficient for this test. However, in advanced programs or
in your projects, you may need to check whether they refer to same memory address or not- in
this case, you can use the 'is' operator.

Logical Operators

ODM Educational Group Page 32

0DM-=

EDUCATONAL GROUP DYNVTAYDININCII | COMPUTER SC.| STUDY NOTES

An earlier section discussed about relational operators that establish relationships among the
values. This section talks about logical operators, the Boolean logical operators (or, and, not) that
refer to the ways these relationships (among values) can be connected. Python provides three
logical operators to combine existing expressions. These are 'or, and, and not'.

Before we proceed to the discussion of logical operators, it is important for you to know about
Truth Value Testing, because in some cases logical operators base their results on truth value
testing.

Truth Value Testing

Python associates with every value type, some truth value (the truthiness), i.e. Python internally
categorizes them as true or false. Any object can be tested for truth value. Python considers

following values false, (i.e., with truth-value as false) and true:

Values with truth value as false Values with truth value as true

None

False (Boolean value False)

Zero of any numeric type, for example, 0, 0.0, 0j
All other values are considered

any empty sequence, for example, ", (), []
true.
(please note, "is empty string; () is empty tuple; and [] is

empty list)

any empty mapping, for example, {}

The result of a rational expression can be True or False depending upon the values of its

operands and the comparison taking place.

Do not confuse between Boolean values True, False and truth values (truthiness values)
true, false. Simply put truth-value tests for zero-ness or emptiness of a value. Boolean values
belong to just one datatype, i.e. Boolean type, whereas we can test truthiness for every value
object in Python. But to avoid any confusion, we shall be giving truth values true and false in small
letters and with a subscript 'tval', i.e., now on in this chapter true 'tval' and false 'tval' will be

referring to truth-values of an object.

The utility of Truth Value testing will be clear to you as we are discussing the functioning of logical

operators.

ODM Educational Group Page 33

0DM-=

EDUCATIONAL GROUP
I longing vour Tomonow M

[DATA HANDLING]

| COMPUTER SC.| STUDY NOTES

The 'or' Operator

The 'or' operator combines two expressions, which make its operands. The 'or’ operator works in
these ways:

(i) relational expressions as operands
(ii) numbers or strings or lists as operands
(i) Relational expressions as operands

When 'or' operator has its operands as relational expressions (e.g., p>q, j !=k, etc.) then the 'or'
operator performs as per following principle:

The 'or' operator evaluates to True if either of its relational) operands evaluates to True; False if

both operands evaluate to False.

That is:
X y xory
False False False
False True True
True False True
True True True

Following are some examples of this 'or' operation:

(4==4) or (5==8) results into True because first expression (4==4) is True.
5>8 or 5<2 results into False because both expressions 5>8 and 5<2 are False.
ii) Numbers / Strings / Lists as operands’

When or operator has its operands as numbers or strings or lists (e.g., 'a' or ", 3 or 0, etc.) then the
or operator performs as per following principle:

In an expression x or vy, if first operand, (i.e., expression x) has false wal, then return second
operand y as result, otherwise return x.

That is:
X y xory
False tval False tval y
False wal True wal y

ODM Educational Group

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES
True wal False wal X
True wal True tal X
Examples:
Operation | Results into Reason
Oor0 0 first expression (0) has false wal, hence second expression 0 is returned.
Oor8 8 first expression (0) has false wai, hence second expression 8 is returned.
50r0.0 5 first expression (5) has true wal, hence first expression 5 is returned.
'hello’ or" 'hello’ first expression ('hello') has true wa, hence first expression 'hello' is
returned.
"or 'a’' ‘a’ first expression (") has false wal, hence second expression 'a' is returned.
“or" [' first expression (") has false wal, hence second expression " is returned.
a'or'j' ‘a' first expression ('a') has true wal, hence first expression 'a' is returned.

How the truth value is determined? — refer to section 3.4.4 A above.

The 'or' operator will test the second operand only if the first operand is false, otherwise ignore it;
even if the second operand is logically wrong e.g.,

20>10o0r"a" +1>1
will give you result as
True

without checking the second operand of or i.e., "a" + 1 > 1, which is syntactically wrong — you
cannot add an integer to a string.

Period -04
The and Operator
The and operator combines two expressions, which make its operands. The and operator works in

these ways:
i) relational expressions as operands

ii) numbers or strings or lists as operands

ODM Educational Group Page 35

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

i) Relational expressions as operands

When and operator has its operands as relational expressions (e.g., p>q, jl=k, etc.) then the 'and'

operator performs as per following principle:

The and operator evaluates to True if both of its (relational) operands evaluate to True; False if

either or both operands evaluate to False.

That is:
X y xandy
False False False
False True True
True False True
True True True

Following are some examples of this 'or' operation:

(4==4) or (5==8) results into True because first expression (4==4) is True.

5>8 or 5<2 results into False because both expressions 5>8 and 5<2 are False.
ii) Numbers / Strings / Lists as operands?®

When and operator has its operands as numbers or strings or lists (e.g., 'a' or ", 3 or 0, etc.) then
the and operator performs as per following principle:

In an expression x and v, if first operand, (i.e. expression x) has false wal, then return first operand x
as result, otherwise return y.

That is:

X y xandy
False tval False tval X
False tval True wal X
True tval False tval y
True wal True al y

ODM Educational Group Page 36

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES
Examples
Operation Results into Reason
OandO 0 first expression (0) has false wai, hence first expression 0 is returned.
Oand 8 0 first expression (0) has false wal, hence first expression 0 is returned.
5and 0.0 0.0 first expression (5) has true wa, hence second expression 0.0 is
returned.
'hello' and" " first expression ('hello') has true wa, hence first expression " is
returned.
"and 'a’' " first expression (") has false wal, hence first expression " is returned.
"and" " first expression (") has false wal, hence first expression " is returned.
a'or'j' ' first expression ('a') has truewa, hence second expression 'j' is
returned.

How the truth value is determined? — refer to section 3.4.4 A above.

IMPORTANT
The 'and' operator will test the second operand only if the first operand is true, otherwise ignore
it; even if the second operand is logically wrong e.g.,

10>20 and "a" + 10<5
will give you result as

False
ignoring the second operand completely, even if it is wrong-
you cannot add an integer to a string in Python.
The 'not Operator
The Boolean / Logical 'not' operator, works on single expression 'or' operand i.e., it is a unary
operator. The logical 'not' operator negates or reverses the truth value of the expression following
it i.e., if the expression is True or truewal, then not expression is False, and vice versa. Unlike 'and'
and 'or' operators that can return number or a string or a list etc. as result, the 'not' operator

returns always a Boolean value True or False.

ODM Educational Group Page 37

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Consider some examples below:

not 5 results into False because 5 is non-zero (i.e., truetai)
not 0 results into True because 0 is zero (i.e., false tval)
not-4 results into False because -4 is non zero thus truetwal.

not(5>2) results into False because the expression 5>2 is True.
not(5>9) results into True because the expression 5>9 is False.
Following table summarizes the logical operators.

Table 3.4 The Logical Operators

Operation Result Notes

Xory If x is falsewal, then return y as It (or) only evaluates the second argument if
result, else x the first one is falseal

xandy If x is falsewal, then x as result, else y | It (and) only evaluates the second argument

if the first one is truetval

not x If x is falsewal, then return True as not has a lower priority than non-Boolean

result, else False operators.

Chained Comparison Operators
While discussing Logical operators, Python has something interesting to offer. You can chain
multiple comparisons which ‘are like shortened version of larger Boolean expressions. Let us see
how. Rather than writing 1<2 and 2<3, you can even write 1<2<3, which the chained version of
earlier Boolean expression.
The above statement will check if 1 was less than 2 and if 2 was less than 3.
Let's look at a few examples of using chains:

>>>1<2<3 is equivalent to >>>1<2 and 2<3

True True
As per the property of and, the expression 1<3 will be first evaluated and if only it is True, then
only the next chained expression 2<3 will be evaluated.
Similarly consider some more examples:

>>>11<13>12

True
The above expression checks if 13 is larger than both the other numbers; it is the shortened
version of 11<13 and 13>12.
Bitwise Operators

ODM Educational Group Page 38

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Python also provides another category of operators- bitwise operators, which are similar to the
logical operators, except that they work on a smaller scale- on binary representations of data.
Bitwise operators are used to change individual bits in an operand.

Python provides following Bitwise operators.

Table 3.5 Bitwise Operators

Operator | Operation Use Description

& bitwise and | opl & op2 The AND operator compares two bits and
generates a result of 1 if both bits are 1;

otherwise, it returns 0.

bitwise or opl | op2 The OR operator compares two bits and generates
a result of 1 if the bits are complementary;

otherwise, it returns 0.

A bitwise xor | opl ” op2 The EXCLUSIVE-OR (XOR) operator compares two
bits and returns 1 if either of the bits are 1 and it

gives 0 if both bits are O or 1.

- bitwise ~opl The COMPLEMENT operator is used to invert all of

complement the bits of the operand.

Let us examine them one by one.

The AND operator &

When its operands are numbers, the & operation performs the bitwise AND function on each
parallel pair of bits in each operand. The AND function sets the resulting bit to 1 if the
corresponding bit in both operands is 1, as shown in the following Table 3.6.

Table 3.6 The Bitwise AND (&) Operation

opl op2 Result
0 0 0
0 1 0
1 0 0
1 1 1

For AND operations, 1 AND 1 produces 1. Any other combination produces 0.

ODM Educational Group Page 39

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

13812 1101 | In [76]: bin(13)
1100 | Out[76]: '@bi1e1’

1100

In [77]: bin(12)
| Out[77]: 'ebiilee’

|

i

|

|

i

1

|

i

| In [78]: 13 & 12
iOut[?S]: 12

i

| In [79]: bin(13 & 12)
| out[79]: '@bliee’

Suppose that you were to AND the values 13 and 12, like this: 13 & 12. The result of this operation
is 12 because the binary representation of 12 is 1100, and the binary representation of 13 is 1101.
You can use bin() to get binary representation of a number.

If both operand bits are 1, the AND function sets the resulting bit to 1; otherwise, the resulting bit
is 0. So, when you lineup the two operands and perform the AND function, you can see that the
two high-order bits (the two bits farthest to the left of each number) of each operand are 1. Thus,
the resulting bit in the result is also 1. The low-order bits evaluate to 0 because either one or both
bits in the operands are 0.

The inclusive OR operatir |

When both of its operands are numbers, the | operator performs the inclusive OR operation.
Inclusive OR means that if either of the two bits is 1, the result is 1. The following Table 3.7 shows
the results of inclusive OR operations.

Table 3.7 The inclusive OR (|) Operation

opl op2 Result
0 0 0
0 1 1
1 0 1
1 1 1

For OR operations, 0 OR 0 produces 0. Any other combination produces 1.

ODM Educational Group Page 40

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

13|12 00001101 | In [8@]: bin(13)
0000 1109 | Out[8e]: 'ebliel’

In [81]: bin(12)

60001101 | ; +[81]: '©b1100"

In [82]: bin(13 | 12)
Out[82]: 'ebliel’

In [83]: 13 | 12
Out[83]: 13

The eXclusive OR (XOR) Operator
Exclusive OR means that if the two operand bits are different, the result is 1; otherwise the result
is 0. The following Table 3.8 shows the results of an eXclusive OR operation.

Table 3.8 The eXclusive OR (*) Operation

opl op2 Result
0 0 0
0 1 1
1 0 1
1 1 0

For XOR operations, 1 OR 0 produces 1. as does 0 XOR 1. (All these operations are commutative).
Any other combination produces O.

In [84]: bin(13)
13212 0000 1101 | ut[84]: '@bl1e@1’

0000 1100

0000 0001

In [85]: bin(12)
Out[85]: '@b110@"

Out[86]: 1

In [87]: bin(13 ~ 12) |
Out[87]: 'ebl’ j

i

i

i

i

i

i

§

| In [86]: 13 ~ 12
|

i

I

i

i

}

The Complement Operators ~

The complement operator inverts the value of each bit of the operand: if the operand bit is 1 the
result is 0 and if the operand bit is 0 the result is 1.

Table 3.9 The Complement (~) Operation

opl Result
0 1

ODM Educational Group Page 41

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

In [91]: bin(12)
Out[91]: '@bliee’

This is binary code of =13 in
9
2’s complement form.

In [92]: ~12

~12 0000 1100 OQut[92]: -13

In [93]: bin{(13)
Out[93]: 'ebllel’

1111 6011
= - (0000 1101)

In [94]: bin(~12)
Out[94]: '-@bll@1l’

Operator Precedence

When an expression or statement involves multiple operators, Python resolves the order of
execution through Operator Precedence. The chart of operator precedence from highest to lowest
for the operators covered in this chapter is given below:

Operator Description
() Parentheses (grouping)
b Exponentiation
X Bitwise nor
+X, -X Positive, negative (unary +, -)
* 1], % Multiplication, division, floor division, remainder
+, - Addition, subtraction
& Bitwise and
A Bitwise XOR
| Bitwise OR
<, <=,>,>=,<> I= == is,is not | Comparisons (Relational operators), identity operators
not x Boolean NOT
and Boolean AND
or Boolean OR

Operator Associativity:

Python allows multiple operators in a single expression as you have learnt above, e.g., a<b+2<c or

p<g>r etc. If the operators used in an expression have different preceedence, there is not any

ODM Educational Group Page 42

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

problem as Python will evaluate the operator with higher precedence first. BUT what if the
expression contains two operators that have the same precedence?

In that case, associativity helps determine the order of operations.

Associativity is the order in which an expression (having multiple operators of same precedence) is
evaluated. Almost all the operators have left-to-right associativity except exponentiation (**),
which has right-to left associativity. That means, in case of multiple operators with same
procedence, other than **, in same expression- the operator on the left is evaluated first and then
the operator on its right and so on.

For example, multiplication operator (*), division operator (/) and floor division operator (//) have
the same precendence. So, if we have an expression having these operators simultaneously, then
the same-precedence-operators will be evaluated in left-to-right order.

For example,

In[1]: 7*8/5//2)
out[1]: 5,0

This first expression is evaluated in left to
right order of operators as evident from

/ the 2nd expression's evaluation that clearly

In [2] . (((7*8)/5)//2) marks this order of evaluation.

Out[2]: 5,0 7~

In[3]: 7*((8/5)//2)
Out[3]: 0,0

In[4]: 7*(8/5//2))
Out[4]: 28,0
An expression having multiple ** operators is evaluated from right to left, i.e.,

2*¥*3**4 will be evaluated as 2**(3**4) and NOT AS (2**3)**4

Consider following example:

In[11]: 3**3%**2

See the default order of evaluation (first Page 43
expression) MATCHES with the second expression
where parentheses are added as per right-to-left

ODM Educational Group

PPN L L PR .
assotrativity Uraer urmd INUT LINC UITimu ©XPpTESSTUTT

that has parentheses from left-to-right order,

P Y 27 T T T P DY S

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Out[11]: 19683

n[12]: 3+ (3¥%2) o

Out[12]: 19683

In[13]: (3%*3)**2

Out[13]: 729

Operators in Python:

This practical session aims at strengthening operators' concepts. It involves both interactive mode
and script mode. For better understanding of the concepts, it would be better if you first perform

the interactive mode practice questions followed by script mode practice questions.

Period-05

EXPRESSIONS

An expression in Python is any valid combination of operators, literals and variables. An expression
is composed of one or more operations, with operators, literals and variables as the constituents
of expressions.

Python puts it in this way: a valid combination of atoms and operators forms a Python expression.
In simplest words, an atom is something that has a value. So all of these are atoms in Python:
identifiers, literals and values-in-enclosures such as quotes ("), parentheses, brackets, etc. i.e.

strings, tuples, lists, dictionaries, sets etc.

ODM Educational Group Page 44

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

The expressions in Python can beof any type: arithmetic expressions, string expressions, relational
expressions, logical expressions, compound expressions etc.
» The types of operators and operands used in an expression determine the expression type.
» An expression can be compound expression too if it involves multiple types of operators,
e.g., a+b>c**d or a*b<c*d is a compound expression as it involves arithmetic as well as
relational as well as logical operators.
Let us talk about these one by one.
1. Arithmetic Expressions
Arithmetic expressions involve numbers (integers, floating-point numbers, complex numbers) and
arithmetic operators.
2. Relational Expressions
An expression having literals and/or variables of any valid type and relational operators is a
relational expression. For example, these are valid relational expressions:
X>Y, Y<=2, Z<>X, ==, X<Y>Z, X==Y<>Z
3. Logical Expressions
An expression having literals and/or variables of any valid type and logical operators is a logical
expression. For example, these are valid logical expressions:
aorb, bandc, a and not b, not c or not b
4. String Expressions
Python also provides two string operators + and *, when combined with string operands and
integers, form string expressions.
» With operator +, the concatenation operator, the operands should be of string type only.
» With * operator, the replication operator, the operands should be one strind and one
integer.
For instance, following are some legal string expressions:
"and" + "then" #would result into 'andthen' — concatenation
"and" * 2 #would result into 'andand' — replication
String manipulation is being covered in a separate chapter-chapter 5.

Evaluating Expressions

ODM Educational Group Page 45

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

In this section, we shall be discussing how Python evaluates different types of expressions:
arithmetic, relational and logical expressions. String expressions, as mentioned earlier will be
discussed in a separate chapter- chapter 5.

Evaluating Arithmetic Expressions

You all are familiar with arithmetic expressions and their basic evaluation rules, right from your
primary and middle-school years. Likewise, Python also has certain set of rules that help is

evaluate an expression. Let's see how Python evaluates them.

Evaluating Arithmetic Expressions
To evaluate an arithmetic expression (with operator and operands), Python follows these rules:
» Determines the order of evaluation in an expression considering the operator precedence.
» As per the evaluation order, for each of the sub-expression (generally in the form of
<value> <operator><value> e.g., 13% 3)
= Evaluate each of its operands or arguments.
= Performs any implicit conversions (e.g., promoting int to float or bool to int for
arithmetic on mixed types). For implicit conversion rules of Python, read the text given
after the rules.
= Computeits result based on the operator.
= Replace the sub-expression with the computed result and carry on the expression
evaluation.
= Repeat till the final result is obtained.
Implicit type conversion (Coercion): An implicit type conversion is a conversion performed by the
compiler without programmer's intervention. An implicit conversion is applied generally whenever
differing data types are intermixed in an expression (mixed mode expression), so as not to lose
information.
In a mixed arithmetic expression, Python converts all operands upto the type of the largest
operand (type promotion). In simplest form, an expression is like op1 operator op2 (e.g., x/y or
p**a). Here, if both arguments are standard numeric types, the following coercions are applied:

» If either argument is a complex number, the other is converted to complex;

ODM Educational Group Page 46

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

» Otherwise, if either argument is a floating point number, the other is converted to floating
point;
» No conversion if both operands are integers.
To understand this, consider the following example, which will make it clear how Python internally
coerces (i.e., promotes) data types in a mixed type arithmetic expression and then evaluates it.
Example 3.3: Consider the following code containing mixed arithmetic expression. What will be

the final result and the final data type?

ch=5 #integer

i=2 Hinteger

fl=4 #integer

db=5.0 #floating point number
fd=36.0 #floating point number
A = (ch+1)/db #expressionl
B=fd/db*ch/2 #expression2

print(A)

print(B)

Solution: As per operator precedence, expression 1 will be internally evaluated as:

A=((ch+i)/db)

step 1 (no conversion here)
int floating pt
step2 (int to floating pt conversion)

floating pt

So overall, final datatype for expression 1 will be floating-point number and the expression will be
evaluated as:

((ch +i)/db)

((5+2))/5.0
ODM Educational Goup ~ Paged7

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

((5+2))/5.0
=(7)/5.0
lint to floating point conversion]

=7.0/5.0

A=1.4
As per operator precedence, expression 2 will be internally evaluated as:
So, final datatype for expression2 will be floating point number.
The expression, expression 2 will be evaluated as:

(((fd/db)*ch)/2)

=(((36.0/5.0)*5L/2) [no conversion required]

=((7.2*5)/2) [int to floating point conversion]
=((7.2*5.0)/2)

=(36.0/2) [integer to floating point conversion]
=36.0/2.0

B=18.0

The output will be 14

18.0
The final data type of expression 1 will be floating point number and of expression 2, it will be
floating-point number.
IMPORTANT: In Python, if the operator is the division operator (/), the result will always be a
floating point number, even if both the operands are of integer types (an exception to the rule).

Consider following example that illustrates it.
Example 3.4: Consider below given expressions what. Will be the final result and final datatype?

a) a,b=3,6 b) a,b=3,6 c) a,b=3,6
c=b/a c=b//a c=b%a
Ans. a) In expression
c=6/3 b / a
c=2.0 ‘ ‘

Here, the operator is /, which always gives floating

floating pt

ODM Educational Group Page 48

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES

b) In expression

c=6//3 b // a
c=2
int int For other division related operations, // and % , if
both operands are integers, result will be integer.
int

c) In expression

c=6%3 b % a
c=0 ‘ ‘
int int
L |
int

You, yourself, can run these expressions in Python shell and then check the type of C using type ©

function).

Period-06
Evaluating Relational Expressions (Comparisons)
All comparison operations in Python have the same priority, which is lower than that of any
arithmetic operations. All relational expressions (comparisons) yield Boolean values only i.e., True
of False.
Further, chained expressions like a<b<c have the interpretation that is conventional in
mathematics i.e. comparisons in Python are chained arbitrarily, e.g., a<b<c is internally treated as
a<b and b<c.
For chained comparisons the x<y<=z (which is internally equivalent to x<y and y<=z), the common
expression (the middle one, y here) is evaluated only once and the third expression (z here) is not
evaluated at all when first comparison (x<y here) is found to be False.
Example: What will be the output of following statement when the inputs are:

i) a=10, b=23, c=23 ii) a=23, b=10, c=10

print (a<b)

ODM Educational Group Page 49

[DATA HANDLING] | COMPUTER SC.| STUDY NOTES

print (b<=c)

print (a<b<=c)

Solution:
For input combination (i), For int combination (ii),
the output would be: the output would be:
True False
True True
True False

Example: How would following relational expressions be internally interpreted by Python?

i) p>g<y ii) a<=N<=b
Solution:
i) (p>q) and (g<y) ii) (a<=N) and (N<=b)

Evaluating Logical Expressions
Recall that the use of logical operators and, or and not makes a logical expression, While
evaluating logical expressions, Python follows these rules:

i) The precedence of logical operators is lower than the arithmetic operators, so constituent

arithmetic sub-expression (if any) is evaluated first and then logical operators are applied,
e.g,
25/5 or 2.0 + 20/10 will be first evaluated as: 5 or 4.0
So, the overall result will be 5. (For logical operators' functioning, refer to section 3.4.3)
ii) The precedence of logical operators among themselves is not, and, or. So, the expression a

or b and not c will be evaluated as:

Similarly, following expression p

(a or (b and (not c))) ((p and q) or (not r))

and g or not r will be evaluated as:

iii) Important: While evaluating, Python minimize internal work by following these rules:
(@) In or evaluation, Python only evaluates the second argument if the first one is false
tval
(b) In and evaluation, Python only evaluates the second argument if the first one is

truetval

ODM Educational Group Page 50

0DM-=

EDUCATONAL GROUP DYNVTAYDININCII | COMPUTER SC.| STUDY NOTES

For instance, consider the following examples:

» In expression (3<5) or (5<2), since first argument (3<5) is True, simply its (first argument's)
result is returned as overall result; the second argument (5<2) will not be evaluated at all.

» In expression (5<3) or (5<2), since first argument (5<3) is False, it will now evaluate the
second argument (5<2) and its (second argument's) result is returned as overall result.

» In expression (3<5) and (5<2), since first argument (3<5) is True, it will now evaluate the
second argument (5<2) and its (second argument's) result is returned as overall result.

» In expression (5<3) and (5<2),since first argument (5<3) is False, simply its (first
argument's) result is returned as overall result; the second argument (5<2) will not be
evaluated at all.

Example: What will be the output of following expression?
(5<10) and (10<5) or (3<18) and not 8<18
Solution: False
Example: 'Divide by zero' is an undefined term. Dividing by zero causes an error in any

programming language, but when following expression is evaluated in Python, Python reported no
error and returned the result as True. Could you tell, why?

(5<10) or (50<100/0)
Solution: In or evaluation, firstly Python tests the first argument, i.e., 5<10 here, which is True. In
or evaluation, Python does not evaluate the second argument if the first argument is True and
returns the result of first argument as the result of overall expression.
So, for the given expression, the second argument expression (50<100/0) is NOT EVALUATED AT
ALL. That is why, Python reported no error, and simply returned True, the result of first argument.
Type Casting
You have learnt in earlier section that in expression with mixed types, Python internally changes
the data type of some operands so that all operands have same datatype. This type of conversion
is automobile, i.e., implicit and hence known as implicit type conversion. Python, however, also
supports explicit type conversion.

Explicit Type conversion

ODM Educational Group Page 51

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

An explicit type conversion is user-defined conversion that forces an expression to be of specific
type. The explicit type conversion is also known as Type Casting.
Type casting in Python is performed by <type>() function of appropriate datatype, in the following
manner:
<datatype>(expression)
where<datatype> is the datatype to which you want to type-cast your expression.
For example, if we have (a=3 and b=5.0), then
int(b)
will cast the data-type of the expression as int.
Similarly,
d=float(a)

will assign value 3.0 to d because float(a) cast the expression's value to float type and then
assigned itto d.
Python offers some conversion functions that you can use to type cast a value in Python. These

are being listed in following Table 3.10.

Table Python Data Conversion Functions

S. Conversion Conversion
Examples
N. From To Function
int(7,8) will give 7
any number-convertible (floating point number to integer
1 |typee.g,afloat, a integer | int() conversion)
string having digits int('34')1° will give 34 (string to integer
conversion)
any number-convertible | floating float(7) will give 7.0
2 | typee.g.,afloat, a point float() (integer to floating point number
string having digits number conversion)

ODM Educational Group Page 52

0DM-=

EDUCATIONAL GROUP
I longing vour Tomonow M

[DATA HANDLING]

| COMPUTER SC.| STUDY NOTES

float('34') will give 34.0
(string to floating point number

conversion)

3 numbers

complex

number

complex()

complex(7) will give 7+0j

(ONE ARGUMENT-integer to complex
number conversion)

complex(3,2) will give 3+2j

(TWO ARGUMENTS- integer to complex

number conversion)

4 | number Booleans

string

str()

str(3) will give 'e' (integer to string
conversion)

string(5.78) will give '5.78'
(floating-point number to string
conversion)

str(0017) will give '15'

(octal number to string conversion;
string converts the equivalent decimal
number to string: 0017-15)

str(1+2j) will give '(1+2j)’

(complex number to string conversion)
str(True) will give 'True'

(Boolean to string conversion)

5 | anytype

Boolean

bool()

bool(0) will give False: bool(0.0) will
give False bool(1) will give True; bool(3)
will give True; bool(") will give False;
bool('a') will give True; bool('hello') will
give True with bool(), non-zero, non-

empty values of any type will give True

ODM Educational Group

Page 53

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

and rest (zero, empty values) will give

False.

10. If a number (in string form) is given in any other base e.g., octal or hexadecimal or binary, it

can also be converted to integers using int() as int (<number-in-string-form>, bae). For
example to convert a string '0o11' (octal bases equivalent of) into integer, you can write
int('0011’, 8) and it will give 8.
If you want to convert an integer to octal or hexadecimal or binary form then oct(), hex() or
bin() function respectively are there but they produce the equivalent number in string they
produce the equivalent number in string form i.e., hex(10) will give you 'oxA'. This value can
be displayed or printed but cannot be used in calculations as it is not number. However, by
combining hex(), oct(), bin() with int (<number string>, base) you can convert to appropriate
type.

Type Casting Issues

Assigning a value to a type with a greater range (e.g., from short to long) poses no problem,
however, assigning a value of larger datatype to a smaller datatype (e.g., from floating-point to
integer) may result in losing some precision.

Floating-point type to integer type conversion results in loss of fractional part. Original value may
be out of range for target type, in which case result is undefined.

With this, we have come to end of our chapter. Let us quickly recap what we have learnt so far.

Period-07

Expression Evaluation

This is an important practical session to reinforce the concepts of expression evaluation in Python.
Proper practice of this PriP Session would lay a strong foundation, which would help you solve
application based questions like outputs, errors etc. This practical session would involve both
interactive mode and script mode.

Question1: (Solved for your reference)

Evaluate the following expression (stepwise) on paper first. Then execute it in Python shell.
Compare your result with Python's. State reasons

len(str(10<20))

ODM Educational Group Page 54

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Other than built-in functions, Python makes available many more functions through modules in its
standard library. Python's standard library is a collection of many modules for different
functionalities, e.g. module time offers time related functions; module string offers functions for
string manipulation and so on.
Python's standard library provides a module namely math for math related functions that work
with all number types except for complex numbers.
In order to work with functions of marh module, you need to first import it to your program by
giving statement as follows as the top line of your Python script:

import math

Then you can use math library's functions as math.<function-name>. Conventionally (not a
syntactical requirement), you should give import statements at the top of the program code.
Following table (Table 3.11) lists some useful math functions that you can use in your programs.
Table 3.11: Some Mathematical Functions in math Module

S. Prototype (General
Function Description Example
N. Form)
math.ceil(1.03) gives 2.0
The ceil() function returns the (e
1 |ceil math.ceil(num) smallest integer not less than | math.ceil(-103) gives -
num. 1.0.
The sqrt() function returns the
2 |sgrt math.sqrt(num) square root of num. If sum<0, | math.sqrt(81.0) gives 9.0
domain error occurs.
The exp() function returns the
math.exp(2.0) gives the
3 |exp math.exp(arg) natural logarithm e railsed to

value of e2.
the arg power.

The fabs() function returns the
4 |fabs math.fabs(num) math.fabs(1.0) gives 1.0
absolute value of num.

The floor() function returns the | math.floor(1.03) gives 1.0
5 |floor math.floor(num) largest integer not greater than | math.floor(-1.03) gives -

num. 2.0

ODM Educational Group Page 55

0DM-=

EDUCATIONAL GROUP
I longing vour Tomonow M

[DATA HANDLING]

| COMPUTER SC.| STUDY NOTES

math.log(num,[base])

The log() function returns the
natural logarithm for num. A
domain error occurs if num is
negative and a range error
occurs if the argument num is

zero.

math.log(1.0) gives the
natural logarithm for 1.0
math.log(1024,2) will
give logarithm of 1024 to
the base2.

logl10

math.log10(num)

The logl0() function returns
the base 10 logarithm for num.
A domainerror occurs if num is
negative and a range error

occurs if the argument is zero.

math.log10(1.0) gives

base 10 logarithm for 1.0.

pow

math.pow(base,exp)

The pow() function returns
base raised to exp power i.e.,
base exp. A domain error
occurs if base=0 and exp<=0;
also base<0 and exp is not

integer.

math.pow(3.0,0) gives
value of 32.
math.pow(4.0, 2.0) gives

value of 42,

sin

math.sin(arg)

The sin() function returns the
sine of arg. The value of arg

must be in radians.

math.sin(val)

(val is a number)

10

cos

math.cos(arg)

The cos() function returns the
cosine of arg. The value of arg

must be in radians.

math.cos(val)

(val is a number)

11

tan

math.tan(arg)

The tan() function returns the
tangent of arg. The value of arg

must be in radians.

math.tan(val)

(val is a number)

12

degrees

math.degrees(x)

The degrees() converts angle x

from radians to degrees.

math.degrees(3.14)
would give 179.91

ODM Educational Group

Page 56

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

The radians() converts angle x | math.radians(179.91)
13 | radians math.radians(x)
from degrees to radians. would give 3.14

The math module of Python also makes available two useful constants namely pi and e, which you

can use as:
math.pi gives the mathematical constant m=3.141592.... to availale precision.
math.e gives the mathematical constant e=2.718281.... to available precision.

Following are examples of valid arithmetic expressions (after import math statement):
Given: a=3, b=4, c=5, p=7.0, q=9.3, r=10.51, x=25.519, y=10-24.113, z=231.05

i) math.pow(a/b, 3.5) ii) math.sin(p/q)+math.cos(a-c)

iii) x/y+math.floor(p*a/b) iv) (math.sqrt(b)*a)-c

v) (math.ceil(p)+a)*c

Following are examples of invalid arithmetic expressions:

i) x+*r two operators in continuation.

ii) q(a+b-z/4) operator missing between g and a.

iii) math.pow(0, -1) Domain error because if base=0 then exp should not be<=0

iv) math.log(-3)+p/q Domain error because logarithm of a negative number is not
possible.

Example: Write the corresponding Python expressions for the following mathematical

expressions:

i) a2 +bi+c i) 2-vye +ay i) p+—3

(r+s)*

iv) (coxx/tanx)+x V) |e2—x|

Solution:
i) math.sqrt(a*a+b*b+c*c)
i) 2-y*math.exp(2*y)+4*y
iii) p+q/math.pow(r+s),4)
iv) (math.cos(x)/math.tan(x))+x

v) math.fabs(math.exp(2)-x)

ODM Educational Group Page 57

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Period-08

Discussion of Output Questions

Solved Problems:

1.

What are data types? What are Python's built-in core data types?

Solution: The real life data is of many types. So to represent various types of real-life data,
programming languages provide ways and facilities to handle these, which are known as
data types.

Python's built-in core data types belong to:

Numbers (integer, floating-point, complex numbers, Booleans)

Y

String

A\

List

Y

Tuple

Dictionary

Which data types of Python handle Numbers?

Solution: Python provides following data types to handle numbers.

i) Integers

ii) Boolean

iii) Floating-point numbers

iv) Complex numbers

Why is Boolean considered a subtype of integers?

Solution: Boolean values True and False internally map to integers 1 and 0. That is,
internally True is considered equal to 1 and False equal to 0 (zero). When 1 and 0 are
converted to Boolean through bool() function, they return True and False. That is why

Booleans are treated as a subtype of integers.

ODM Educational Group Page 58

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

4.

Identify the data types of the values given below:

3, ej, 13.0, '13', "13", 2+0j, 13, [3, 13, 2], (3, 13, 2)

Solution:

3 integer 3j complex number
13.0 Floating-point number 13’ string

"13" String 2+0j complex number
13 integer [3, 13, 2] List

(3,13, 2) Tuple

What do you understand by term 'immutable'?

Solution: Immutable means unchangeable. In Python, immutable types are those whose
values cannot be changed in place. Whenever one assigns a new value to variable referring
to immutable type, variable's reference is changed and the previous value is left
unchanged. e.g.,

x=3

X IIjjjjj_’j::_' """" D~ »3 value 3 is untouched and x is made to refer

5 to new value

What will be the output of the following?
print(len(str(17//4)))
print(len(str(17/4)))

Solution: 1
3
because and
len(str(17//4)) len(str(17/4))
=len(str(4)) =len(str(4.0))
=len('4) =len('4.0")
=1 =3

ODM Educational Group Page 59

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

7. What will be the output produced by these?
a)12/4 b) 14/14 c) 14%4 d) 14.0/4 e) 14.0//4 f) 14.0%4
Solution: a) 3.0 b)1 c)2 d) 3.5 e) 3.0 f) 2.0

8. Given that variable CK is bound to string "Raman" (i.e., CK="Raman"). What will be the

output produced by following two statements if the input given in "Raman"? Why?
DK = input("Enter name:")
Enter name: Raman
a) DK==CK b) DK is CK
Solution: The output produced will be as:
a) True b) False
The reason being that both DK and CK variable are bound to identical strings 'Raman’. But
input strings are always bound to fresh memory even if they have value identical to some
other existing string in memory.
Thus DK==CK produces True as strings are identical.
But DK is CK produced False as they are bound to different memory addresses.
9. What will be the output of following code? Explain reason behind output of every line?
5<5o0r 10
5<10 or 5
5<(10 or 5)
5<(5 or 10)
Solution:
10
True
True
False
Explain:

Linel 5<5or 10 precedence of < is higher than or

ODM Educational Group Page 60

0DM-=

DTN GROR [DATA HANDLING] | COMPUTER SC.| STUDY NOTES
= False or 10
=10 because or would evaluate the second argument if first
argument is False or falsetal
Line2 5<10 or 5 precedence of < is higher than or
=True or 5
=True or would return first argument if it is True of truewal

Line3 5<(10 or 5)
=5<10 10 or 5 returns 10 since 10 is truetyal
=True

Lined 5<(5 or 10)
=5<5 5 or 10 returns 5 since 5 is truetval

=False

10. What will be output produced by the three expressions of the following code?
a=5
b=-3
c=25
d=-10
at+b+c>a+c-b*d
str(a+b+c>a+c-b*d)=="true’
len(str(a+b+c>a+c-b*d)==len(str(bool(1)))
Solution:
True
False
True
11. What would Python produce if for the following code, the input given is
i)11 ii) hello iii) just return key pressed, no input given

iv) 0 v) 5-5

ODM Educational Group Page 61

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Code:
bool(input("Input:")) and 10<13-2
Solution:
i) Input: 11 would yield
bool ('11') and 10<11
True and 10<11
=True
ii) True [Forthe same reason as in (i)]
iii) False because when just return key is pressed, input is "i.e., empty string, hence
expression becomes
bool(") and 10<11

False and True

=False
iv) bool('0') and 10<11 (Please note '0' is a non-empty string and
True and True hence has truth value as truetya)

=True
v) bool('5-5') and 10<11
=True and 10<11
=True
12, What would be the output of the following code? Explain reason(s).
a=3+5/8
b=int(3+5/8)
c=3+float(5/8)
d=3+float(5)/8
e=3+5.0/8
f=int(3+5/8.0)
print(a, b, ¢, d, e, f)
Solution: The output would be
3.625 3 3.625 3.625 3.625 3
ODM Educational Goup ~ Page62

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

Explain:
Linel a=3+5/8
=3+0.625
..a=3.625

Line2 b=int(3+5/8)
=int(3+0.625) (int() will drop the fractional part)
=int(3.625)
b=3

Line3 c=3+float(5/8)
c=3+float(0.625)
=3+0.625
c=3.625

Line4 d=3+float(5)/8
=3+5.0/8 5.0/8=0.625 because one operand is floating point, the
=3+5.0/8 integer operand will be internally converted to

d=3.625 floating-pt.

Line5 e=3+5.0/8
=3+0.625 (same reason as above)

e=3.625

Line6 f=int(3+5/8.0) (same reason as above)
f=int(3+0.625)
f=int(3.0) (int()will drop the fractional part)
f=3
13. What will be the output produced by following code statements?
a) 87//5 b) 87//5.0

ODM Educational Group Page 63

0DM-=

EDUCATIONAL GROUP [DATA HANDLING] | COMPUTER SC.| STUDY NOTES
c) (87//5.0)==(87//5) d) (87//5.0)==int(87/5.0)
e) (87 //int(5.0)) ==(87//5.0)
Solution: a) 17 b) 17.0 c) True d) True e) True

14.

15.

What will be the output produced by following code statement? State reason(s).

a) 17%5 b) 17%5.0

c) (17%5)==(17%5) d) (17%5) is (17%5)

e) (17%5.0)==(17%5.0) f) (17%5.0) is (17%5.0)

Solution: a) 2 b) 2.0 c) True d) True e) True f) False

Both (c) and (e) evaluate to True because both the operands of== operator are same
values (2==2in (c) and 2.0==2.0 in (e).

(d) evaluates to True as both operands of is operator are same integer objects (2).

Since both operand expressions evaluate to same integer value 2 and 2 is a small integer
value, both are bound to same memory address, hence is operator returns True.

In (f), even though both operands evaluate to same floating point value 2.0, the is operator
returns False because Python assigns different memory address to floating point values
even if their exists a same value in the memory.

What will be the output produced by the following code statements? State reasons.

a) bool(0) b) bool(1) c¢) bool('0")
d) bool('1") e) bool(") f) bool(0.0)
g) bool('0.0') h) bool(0j) i) bool('0j')
Solution:

a) False. Integer value O has false truth value hence bool() converts it to False.

b) True. Integer value 1 has true truth value hence bool() converts it to True.

c) True. 'O'is string value, which is a non-empty string and has a true truth value, hence
bool() converts it to True.

d) True. Same reason as above.

e) False. "is" an empty string, thus has false truth value, hence bool() converts it to

False.

ODM Educational Group Page 64

0DM-=

EDUCATONAL GROUP [DATAHANDLING] RSO SN IS AVTeR i

16.

17.

f) False. 0.0 is zero floating point number and has false truth value, hence bool()
converts it to False.

g) True. '0.0' is a non-empty string hence it has true truth value and thus bool()
converted it to True.

h) False. 0jis zero complex number and has false truth value and thus bool() converted
it to False.

i) True. 'Oj'is non-empty string, hence it has true truth value and thus bool() converted
it to True.

What will be the output produced by these code statement?

a) bool(int('0"))

b) bool(str(0))

c) bool(float('0.0"))

d) bool(str(0.0))

Solution: a) False b) True c) False d) True

What will be the output of following code? Why?

i) 13 orlen(13)

i) len(13) or 13

Solution:

i) 13 because or evaluates first argument 13's truth value, which is truewa and
hence returns the result as 13 without evaluating second argument.

ii) error because when or evaluates first argument len(13), Python gives error as len()

works on strings only.

¥k 3k

ODM Educational Group Page 65

